

Technical

Documentation

Page 2
[Technical Documentation]

Table of Contents

01_Overview 5

01.1_Platform Components 6

01.1.1_Processing 7

01.1.2_Dynamic Routing 8

01.1.3_Reconciliation 8

01.1.4_Analytics 9

01.2_Core Concepts 9

01.2.1_Providers 10

01.2.2_Payment Methods 11

01.2.3_Channels 13

01.2.4_Transactions 14

01.2.5_Elements 16

01.2.6_Lifecycle Events 17

01.3_Security 18

01.3.1_PCI DSS and PCI PIN 19

01.3.2_TLS AND HTTPS 22

01.3.3_Two Factor-Authentication 22

01.3.4_API Keys 23

01.4_Fraud Prevention 23

01.5_Stability and Scalability 23

02_Account 25

02.1_Authentication 27

02.2_API Keys and Environment 28

02.3_API key ID 32

02.4_Languages 35

Page 3
[Technical Documentation]

02.5_Navigation and Pagination 35

02.6_Merchant and Sub-Merchants Accounts 38

02.6.1_Merchants 38

02.6.2_Merchant ID 41

02.6.3_Sub-merchants 43

02.7_Users and Authorization Groups 45

02.7.1_Users 45

02.7.2_User ID 50

02.7.3_Authorization Groups 52

02.7.4_Authorization Group ID 55

03_Permissions 58

04_Integrating 66

04.1_Dynamic Forms 74

04.1.1_Display Form 75

04.1.2_Create a Charge 78

04.1.3_Client Library Reference 84

04.2_Hosted Checkout (not allowed for cards payment method) 92

04.3_REST Integration (not allowed for cards payment method) 96

04.3.1_Display Form 96

04.3.2_Generating a Charge 98

04.3.3_Create Instrument 103

04.3.4_Alternative Flows 108

04.4_Transaction Flows 109

04.4.1_Capturing funds at a later time 111

04.4.2_Refunding Transactions 113

04.5_Event Handling 113

04.5.1_Receive Events 114

04.5.2_Event Details 115

Page 4
[Technical Documentation]

04.5.3_Event Types and Parameters 117

04.6_Error Codes 140

04.6.1_Testing 146

05_Processing 150

05.1_Charge 151

05.2_Instrument 163

05.3_Payment 177

05.4_Reversal 181

05.5_Refund 185

06_Dynamic Routing 189

06.1_Routing Rules 190

06.2_Strategy 208

07_Analytics 210

08_Reporting 217

08.1_Reports 218

08.2_Templates 227

08.3_Reporting Schedules 233

09_Dashboard 237

09.1_Dashboard Settings 241

10_Annex 243

10.1_Payshop Channels 243

10.1.1_Card 243

10.1.2_MBWay 244

10.1.3_Multibanco 245

10.1.4_Payshop Reference 246

10.2_Asynchronous payments 248

Page 5
[Technical Documentation]

01_Overview

The Payshop Online Payments platform has been designed from the beginning to provide

flexibility and reduce the maintenance efforts of your payment operation.

Through a Single Integration Flow, a microservices architecture composed of platform

Components and an abstracted and standardized means of processing transactions, we allow

you to decouple your payments infrastructure. This grants you the opportunity to expand

globally without struggles or delays.

1. Avoid the development and maintenance of custom connections to Payment

Stakeholders like Acquirers, PSPs, Gateways, Processors, and Fraud Vendors.

2. Avoid building your own Payment Applications.

3. Reduce your PCI DSS scope, by keeping sensitive data off your servers while

maintaining a seamless checkout experience across every channel.

Core Concepts
Core Concepts lays the

foundations for
understanding how we
process any Payment
Method through any
Provider whilst only
requiring a Single
Integration Flow.

Core Concepts is all about
getting on the same page.

Security
It takes a lot of effort to make

sure payments are secure.
Get to know our security
principles and how we

enforce them.

Page 6
[Technical Documentation]

01.1_Platform Components

The Payshop Online Payments platform enables real-time transactions on an any-to-any basis:

multi-channel, multi-network, multi-method, and multi-currency. This abstraction feeds a

shared, event-based database on top of which run multiple internal applications and external

value-added services. These make up our platform Components.

The Payshop Online Payments is composed of several cloud-agnostic microservices that can

be deployed independently on cloud or on-premise security-certified servers. Microservices

include Processing, Dynamic Routing, Reconciliation, Risk, Analytics, Dashboard, Merchant,

Reporting, Event-Sourcing, Auth, Load-Balancers, Service Discovery, Monitoring, Logging, and

Security Services.

1. Complete Control

The Payshop Online Payments platform’s infrastructure provisioning and deployment

are fully automated, enabling horizontal scalability, zero-downtime deployments,

fault-tolerance, and disaster recovery.

2. Complete Security

The Payshop Online Payments platform is also PCI Level 1 certified and follows the

strictest industry security standards.

The Payshop Online Payments platform is completely modular, and each Platform

Component can consume both internal services or third party’s. This system architecture

allows for maximum flexibility on custom setups.

1. The Single Integration Flow can support custom transaction collection

parameterization without any changes in your code for multiple payment channels;

2. The Payshop Online Payments platform feeds its own and 3rd party’s Dashboard

through REST APIs;

3. All Processing integrations, both international card schemes and any alternative

Payment Methods, can be added in the transaction flow without any changes to your

code

Page 7
[Technical Documentation]

01.1.1_Processing

The Processing application uses the same abstractions for all transactions, regardless of them

being synchronous or asynchronous, payins, payouts or marketplaces, redirection-based, pre-

payments or post-payments, one-time or recurring. This way, you are able to add new

payment channels without any changes in your code, while keeping your checkout

experience fully customizable.

Future Proof

Our client-side library will check all Payment Channels enabled on any

specific Merchant Account, returning a Form Schema for each of them. A

Form Schema is a description of all the payment data fields required to

process a specific payment method. It will then be possible to dynamically

build any form based on that list. This means that if more payment

channels are added in the future, the existing code will be ready for them.

Single Integration

The Single Integration Flow can adapt to any transaction flow, such as

specific data collection, custom payment configurations, technical

requirements, and UX specifications.

Tailor-Made

The abstraction created on our backend to support the multitude of

payment flows can also enable authorization for custom setups. These can

include not only financial transactions such as POS and Private Label

schemes but also virtual value such as Loyalty and Coupons, making it one

the most comprehensive and flexible payments platforms available on the

market.

Page 8
[Technical Documentation]

01.1.2_Dynamic Routing

Our Dynamic Routing component provides real-time switching capabilities that allow us to

select the best Provider for a given transaction.

Industry Cognizant

Besides enabling connections industry-wide, the Payshop Online

Payments platform adds a rules-based layer that intelligently routes

transactions between a wide network of payment channels in real-time to

maximize payment performance.

Flexible

A Transaction profiling system is processed to set default transaction

metadata, which is used to define custom rules for automatic switching in

real-time at Transaction level.

01.1.3_Reconciliation

Reconciliation of incoming settlements against bank accounts is a complex process. This

activity becomes even more challenging when a business relies upon multiple Providers, with

multiple reporting structures. Reconciliation helps oversee and uniformize transaction data

towards thoughtful monitoring of your payment operations.

Source Standardization

The Reconciliation Engine processes Transaction Statements from

different Sources and formats into a single data structure.

Time-Saving

Reconciliation produces Settlement events that automate and simplify the

monitoring process.

Page 9
[Technical Documentation]

01.1.4_Analytics

The Payshop Online Payments platform uses Big Data technologies to capture, store, analyze,

search, share and visualize voluminous and complex payment datasets. Our platform

transforms raw data into consumable information, generating valuable insights that

empower payment managers to make better decisions.

Instantaneous Feedback

Every transaction parameter is indexed in the Lifecycle Database and

becomes readily available for processing through the Analytics API.

Diversity of Insights

You are able to perform queries to the database using multiple parameters

to get operations insights, monitor your processing commissions, or control

bookkeeping.

01.2_Core Concepts

Digital payments have been growing at a fast pace to support the ever-evolving global

commerce market. New means of payment, new regions, new regulation, new security

guidelines, and new customer segments ensure the payments landscape is constantly

shifting.

Adjusting to these new realities can be challenging and complex. Our platform simplifies the

process and puts an end to the growing pains that come with expanding your business. It was

designed with flexibility in mind to support the growth of your payment operation. In order to

achieve this, we defined core concepts in our architecture from the outset. These allowed us

to maintain a single integration, no matter the payment method being processed, whilst

giving you access to multiple Platform Components.

Page 10
[Technical Documentation]

Single Integration Flow

First time's the charm. With this platform you get access to every present

and future payment method, as well as all the tools required to run a

professional, and comprehensive payments operation through a single

integration.

01.2.1_Providers

In the Payshop Online Payments platform, a provider is a payments’ value chain stakeholder

to which the Processing application is connected to.

Acquirers

An acquiring bank, also known simply as an acquirer, is a bank or financial institution that

processes credit or debit card payments on behalf of a merchant. The acquirer allows

merchants to accept credit card payments from the card-issuing banks within an association.

Acquirer Processors

Acquirer processors connect directly with merchants, card networks, and the acquirer, to

exchange transaction information between all stakeholders. They provide the technical

capabilities to communicate authorization and settlement messages between the acquirer

and the card networks.

Acquirer processors handle the technical side of the acquiring business, they do not assume

financial liability for the process, as they are not involved in fund management. This liability

and risks lie on acquirers. Nonetheless, it is important to note that In some cases, the acquiring

bank and acquirer processor are a single entity (e.g. Adyen, Elavon).

Payment Service Providers (PSPs)

A payment service provider (PSP) is a payment institution with the right to manage third-party

funds. It offers merchants multiple payment methods, namely credit card, direct debit, and

bank transfers.

Typically, a PSP can connect to multiple acquiring banks, card networks, and payment

networks, which makes the merchant less dependent on financial institutions by eliminating

Page 11
[Technical Documentation]

the burden of establishing these interactions directly. This can be especially relevant when

operating internationally.

Gateways

A payment gateway represents a technical layer that collects payment instrument credentials

in the client-side and securely forwards them to the relevant payment service provider (PSP)

or acquirer. The majority of gateway companies also offer other services.

Fraud Vendors

Fraud vendors are capable of predicting user intent and preventing fraudulent activity in real-

time. They fundamentally manage risk and hinder financial crime.

Tokenization Service Providers

These institutions tokenize card data, which is the pseudonymization of credit cards sensitive

data to facilitate compliance for merchants, PSPs, and acquirers. Tokenization service

providers exist to grant a secure environment in which to store the card data sent by

merchants.

01.2.2_Payment Methods

In its broader definition, a payment method is any set of infrastructure and regulation that

supports value exchange between a network of participants.

Cards are not the only way to pay for online transactions. Between bank transfers, direct debits,

eWallets, mobile payments, local card schemes, pre-pay, post-pay, and e-invoices, there are

over 200 different types of alternative payment methods.

Alternative Payment Methods (APMs)

The designation of alternative payment method applies to any form of payment that is not

cash or a card issued by a major bank. APMs are commonly used and increasingly adopted

across sectors and territories to respond to consumer's trends. Accessing them is essential to

any business.

Page 12
[Technical Documentation]

Our platform allows you to process transactions using any payment method, from traditional

credit/debit cards to alternative payment methods or custom payment methods like private

label, credit-to-consumer, and loyalty schemes.

Some of the payment methods supported by the Payshop Online Payments platform

In the complex and diverse world of payments, there are multiple payment methods available

in multiple markets.

Card

A physical or digital card issued by a financial

entity that can be used for purchases. There

are different types of cards available in the

market, including debit, credit, and prepaid

cards.

e-Wallet

Digital wallet that can store funds and

perform electronic payments. It can be

connected to a bank account and used to

store card details.

Page 13
[Technical Documentation]

Bank Transfer

Electronic payment directly performed from

one bank account to another, between two

individuals or an individual and an entity.

Direct Debit

Gives banking customers the ability to

authorize third-party creditors to debit funds

from their checking account.

Cryptocurrency

Digital asset designed to work as a medium

of exchange. Individual coin ownership

records are stored in a digital ledger or

computerized database using strong

cryptography to secure transaction record

entries, to control the creation of additional

digital coin records, and to verify the transfer

of coin ownership.

Local Card Scheme

Local card schemes—specific to certain

markets—often operate much like

traditional cards, but some schemes will be

more sophisticated, for instance, offering

card and bank transfer options.

Carrier Billing

Online payment method that allows

customers to use their phone carrier bill to

pay mostly for digital goods.

Cash

Physical form of currency represented by

banknotes and coins that can be exchanged

for goods, typically during product delivery.

01.2.3_Channels

The concept of payment method and provider are interconnected in the sense that a given

payment method may be available through several providers within the same market, the

same way that a given provider may support multiple payment methods. They are also

selected by two different entities, the method being chosen by the customer through the

Dashboard, and the provider defined by the Dynamic Routing module.

The combination of a payment method and a provider represents a channel in the Payshop

Online Payments platform. It is an actual medium that can be used to perform a financial

transaction (e.g. Credit Card through Elavon, or Alipay through Worldpay).

Page 14
[Technical Documentation]

A channel is configured through the Dashboard using the API keys for the merchant account

that you have opened with the provider. By setting up multiple channels for the same

payment method, and leveraging our Dynamic Routing component, you can define specific

rules for real-time transaction routing between multiple providers.

Higher Acceptance Rate

Providers have different acceptance rates. These depend on multiple

variables, such as card brand, issuing country/bank, MCC and amount.

Failed transactions result in lost sales and increased customer support

costs. Our platform can retry transactions in real-time across multiple

Providers to maximise acceptance rates.

Lower Processing Costs

A rise in cross-border transactions is pushing processing costs up,

especially due to inter-regional interchange fees and card scheme fees.

The Payshop Online Payments platform calculates expected commissions

based on multiple processing variables to choose the optimal transaction

route.

01.2.4_Transactions

The diversity of the payments ecosystem poses a great challenge to global companies, as each

payment channel requires its own specific integration, which is costly to build and maintain.

As payment channels start to add up, companies become unable to optimize their payment

operations in a timely manner.

With this challenge in mind, we devised a way to abstract every transaction flow in a single

one, independent from the payment method, allowing companies to invest one time into

integrating with our platform and gain access to the entire value chain without further

development investments.

To this effect, we divide a financial Transaction into multiple correlated steps, which we either

call Elements, or Lifecycle Events. Each of these steps represents a different phase in the

transaction lifecycle within the Payshop Online Payments platform, and therefore, requires

and stores different data.

Page 15
[Technical Documentation]

Supporting different Payment Methods under the same platform in a standardized manner

brings additional challenges when it comes to transaction execution. Each Payment Method

is designed with its own philosophy when it comes to processing Transactions, and therefore

requires different steps, and different execution flows.

Accommodating this diversity under the same platform required us to support four

transaction flows.

Transaction Flow Payment executed automatically? Recurring Payment?

1. Capture on Creation Yes No

2. Auth-Capture No No

3. Recurring on Auth Yes Yes

4. Recurring on a Capture No Yes

Capture on Creation

This flow targets transactions that only need

to take place once, and where the funds do

not need to be captured at a later time,

therefore not requiring an authorization to

take place.

From a platform perspective, this flow does

not require you to create the Payment

element to execute the funds transfer. The

Processing Application will automatically

create the Payment element once you

create the instrument, given that the funds

will be captured right away.

Example usage: payment of digital goods.

Auth-Capture

An Auth-Capture flow is intended for

transactions that take place once, and have

the funds captured at a later time, thus

requiring two steps: Authorization and

Funds Capture.

The Authorization is executed when the

Instrument element is created in our

platform, either automatically using our

Dynamic Forms or manually leveraging our

REST API. At this stage the money has been

reserved from the customer accounting

platform but has not yet been transferred.

The actual funds transfer only happens when

Page 16
[Technical Documentation]

Recurring on Auth

Destined for payments that need to happen

on a frequent basis, this flow allows to create

a reusable instrument element that can be

leveraged to make multiple Payments.

This particular recurring flow automatically

executes the Payment element when the

Instrument is created. It means that for the

first payment, you only need to create the

Instrument, as the platform will

automatically create the first payment. For

subsequent transactions you only need to

create the payment element, referencing

the same specific instrument.

Example usage: subscriptions.

the payment element is created in the

Platform.

Example usage: hotel or rental car bookings

Recurring on Capture

Designed for transactions that need to take

place regularly, enables you to create a

reusable Instrument element that can be

used to perform multiple Payments.

This particular recurring flow does not

automatically execute the Payment element

when the Instrument is created. In short, it

requires you to create a Payment element

every time you want to execute a

transaction.

Example usage: subscriptions.

01.2.5_Elements

With the current and future variety of payment methods, ensuring they can conform to

standardized operation is paramount. To be truly effective, the utilization experience of a

payments platform should not require different integrations or execution flows.

The Payshop Online Payments platform defined elements to this effect, to allow a global way

of handling payments in a single integration. By utilizing the elements described below we

ensure our platform is future-proof, by handling any current and future payment methods in

a uniform manner.

01
Charge

Signals the Merchant’s intent to do a fund transfer. It is at this stage that the

Payment Method and Provider are selected as configured.

02

Instrument

Element providing the information required to authorize one or more

transactions for the target payment method (e.g. credit card details).

Page 17
[Technical Documentation]

03
Payment

Stage where transaction captures actually take place. May be initiated for

certain transaction flows.

04

Reversal

Reversals serve two purposes. They are used for reversing a capture or Refund

that has not yet been cleared, or for voiding an authorization.

05

Refund

Allows the complete or partial return of the funds to the originating customer.

Can only be done for successful transactions and is initiated by the merchant.

06

Dispute

Initiated by the provider, this element represents a customer or issuing bank

questioning the validity of the original transaction and may result in funds’

reversibility if the claim is successful.

01.2.6_Lifecycle Events

The Payshop Online Payments platform relies on a microservices' architecture to provide

Platform Components besides the actual transaction processing. In order to achieve this, it

uses an event-driven philosophy for cooperation and routing between services.

One added benefit of doing so is that it allows you to subscribe to notifications regarding the

lifecycle of transactions. Examples of such notifications would include events like

charge.created, instrument.authorized or payment.success. These can be leveraged to

orchestrate payment-related activities on your side.

Page 18
[Technical Documentation]

Learn more about lifecycle events.

Lifecycle events are the best way to keep track of transactions' statuses on the

server-side, and update your databases and systems accordingly.

01.3_Security

It takes a lot of effort to make sure payments are secure. Fraud can be costly for merchants

and financial institutions, so it is important to ensure all types of threats, attacks, and

suspicious activity are closely monitored. There are six main security principles we follow when

it comes to making sure your transactions are safe.

Secure network and systems

Software updates, firewalls, monitoring, logging.

Safety of cardholder data

Hashing, encryption, restricted access to servers, storage, and networks.

Vulnerability management program

Intrusion Detection System (IDS), File Integrity Monitoring (FIM),

monitoring and logging.

Access control

Restrict users access, track users access, restrict physical access.

Page 19
[Technical Documentation]

01.3.1_PCI DSS and PCI PIN

Payment Card Industry Data Security Standard (PCI DSS) is a set of security standards formed

in 2004 by Visa, MasterCard, Discover Financial Services, JCB International, and American

Express that aims to secure credit and debit card data transactions against data theft and

fraud. The PCI Security Standards Council defines a set of requirements intended to ensure

that all companies that process, store, or transmit credit card information maintain a secure

environment.

PCI DSS Compliance Levels

Level 1

On-site assessment conducted yearly by a

Qualified Security Assessor.

Level 2

Quarterly internal and external scans

performed by an Approved Scanning

Vendor.

Level 3

Yearly internal penetration tests by an

Approved Scanning Vendor.

Level 4

Yearly revision of security and quality

procedures.

In short, PCI DSS is a set of regulations that apply to all entities that store, process, and/or

transmit cardholder data. It covers technical and operational practices for system components

https://www.pcisecuritystandards.org/assessors_and_solutions/qualified_security_assessors
https://www.pcisecuritystandards.org/assessors_and_solutions/approved_scanning_vendors
https://www.pcisecuritystandards.org/assessors_and_solutions/approved_scanning_vendors
https://www.pcisecuritystandards.org/assessors_and_solutions/approved_scanning_vendors

Page 20
[Technical Documentation]

included in or connected to environments with cardholder data. If you accept or process

payment cards, PCI DSS applies to you. The criteria for Level 1 PCI DSS compliance depends

on which card brands the merchant accepts, as follows:

● Visa, Mastercard, and Discover define Level 1 merchants as those processing more than

6 million credit card transactions annually;

● American Express’s minimum for Level 1 is 2.5 million transactions per year;

● JCB’s Level 1 starts at 1 million credit card transactions per year.

To meet PCI DSS Level 1 Standard there are five main required processes, which every

compliant company must go through every year.

● Annual Report on Compliance (ROC) by a Qualified Security Assessor (QSA) or Internal

Security Assessor;

● Quarterly network scan by Approved Scan Vendor (ASV);

● Penetration test;

● Internal Scan;

● Submission of completed Attestation of Compliance form.

The Payshop Online Payments platform is PCI DSS Level 1 compliant. But

what does that mean exactly? And why should you care about it?

 PCI DSS is a challenging, complex, and considerably expensive

certification to achieve. By integrating with this platform you save your

business the effort of going through with it.

Around 250 requirements comprise the Payment Card Industry (PCI) Data Security Standard.

You can find a simplified version of the requirements necessary to meet the PCI Compliance

Security Standard Council’s goals in the table below.

 Goals PCI DSS Requirements

https://www.pcisecuritystandards.org/assessors_and_solutions/qualified_security_assessors
https://www.pcisecuritystandards.org/assessors_and_solutions/approved_scanning_vendors
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf

Page 21
[Technical Documentation]

 Build and Maintain a

 Secure Network

1. Install and maintain a firewall configuration to

protect cardholder data

2. Do not use vendor-supplied defaults for system

passwords and other security parameters

 Protect Cardholder Data

3. Protect stored cardholder data

4. Encrypt transmission of cardholder data across open,

public networks

 Maintain a Vulnerability

 Management Program

5. Use and regularly update anti-virus software or

programs

6. Develop and maintain secure systems and

applications

 Implement Strong Access

 Control Measures

7. Restrict access to cardholder data by business need-

to-know

8. Assign a unique ID to each person with computer

access

9. Restrict physical access to cardholder data

 Regularly Monitor and

 Test Networks

10. Track and monitor all access to network resources

and cardholder data

11. Regularly test security systems and processes

 Maintain an Information

 Security Policy

12. Maintain a policy that addresses information security

for employees and contractors

Page 22
[Technical Documentation]

01.3.2_TLS AND HTTPS

The Hypertext Transfer Protocol (HTTP) is the basic communication protocol that both clients

and servers must implement in order to be able to communicate. It transfers information

between the browser and the server in clear text, allowing the network, through which the

information passes, to see the information transmitted. HTTP Secure (HTTPS) was introduced

to allow the client and the server to first establish an encrypted communication channel, and

then pass the clear text HTTP messages through it.

It is crucial for payment security that merchants implement SSL protocol on their websites.

Transport Layer Security (TLS), and its now-deprecated predecessor, Secure Sockets Layer

(SSL) allows for the encryption of the information that goes through the website, such as the

payment card details that customers share during the checkout process.

HTTPS TLS provides three important security measures.

● Confidentiality. It protects communication between two parties from others within a

public medium such as the internet.

● Integrity. It ensures information reaches its destined party in full and unaltered.

● Authentication. It grants that the website is actually what it claims to be by also

checking its legal identity.

01.3.3_Two Factor-Authentication

Two-factor authentication is an extra layer of security designed to ensure that only the rightful

users can access their respective accounts on the Payshop Online Payments platform, namely

by logging into the Dashboard.

Two-Factor Authentication is enabled under settings for every user with access to the

Dashboard.

Page 23
[Technical Documentation]

01.3.4_API Keys

Different combinations between the Merchant API Keys or Processing API Keys and your

account ID grant authentication in your requests. It is important to be well aware of when to

use each of the keys and how to gain access to them.

● Public Key. Used in requests coming from the client-side, to create dynamic forms and

instruments.

● Account ID and Private Key. Used in requests coming from the merchant server, to

create charges, payments, reversals, and refunds, as well as accessing management

APIs. This key SHOULD NEVER BE SHARED in client-side code.

Looking for more details on the Dashboard?

The Dashboard offers a comprehensive and user-friendly interface to

support your payment strategy.

Check out our Dashboard features.

01.4_Fraud Prevention

For every transaction, there are multiple security steps that can be taken. These can be either

automatically applied by the Payshop Online Payments platform or are optional and can be

enabled through our applications.

01.5_Stability and Scalability

We understand that stability and scalability are big concerns for the businesses that work with

us. There are multiple efforts we make towards ensuring our services and applications are

reliable.

Page 24
[Technical Documentation]

 Goals Procedures

 Systems resilience

 High-Availability

 Stability

- 24/7 alerting and monitoring: All infrastructure is monitored

about system telemetry.

- Application monitoring: all apps communicate to a logging

system that centralizes infrastructure logs.

- Monitoring of replica databases.

- Critical failures are communicated through SMS/email, both

internally and to our customers.

 High Availability SLAs

- Historically, our system's availability surpasses 99.9%.

- We are deployed in multiple cloud services and DNSs.

 Automatic Backup

 Disaster Recovery

- Daily database backups.

- Multiple and geographically dispersed database locations

- Automatic disaster recovery: server provisioning, backup

import, build, and run app services.

- How fast? We annually test all disaster recovery procedures

and it takes on average 2h.

 Zero Downtime Updates

- Use of load balancers to route requests to machines running

upgraded versions.

- Use of load balancers to rollback requests to machines running

previous versions.

 Scalability

- Full horizontal scalability.

- Microservices architecture, based on Docker containerization.

- Databases and applications run in different and multiple

Page 25
[Technical Documentation]

machines.

- Script for automatic microservices instances deployment.

- Service discovery: infrastructure orchestration system to which

applications communicate to find the right servers.

 Big Data Infrastructure

- Data warehousing: different data representations to optimize

data queries.

- Data denormalization.

- Event sourcing.

- Stream processing: event-based database to be consumed by

different applications.

- Transaction flow for client-side tokenization.

- Fully PCI Level I compliant: servers, data, network, and

employees have implemented security measures to guarantee

bank-grade security.

- GDPR compliant: the personal data privacy is fully encrypted

and managed by a data controller, so it can be deleted on

request.

02_Account

Get started with the Payshop Online Payments Platform.

Businesses are at the forefront of the Payshop Online Payments platform. When starting out

with the platform, properly setting up your business account can be crucial to your integration

efforts. Learn more about API keys and environments as well as how to proceed regarding

authentication, whitelisting, languages, and navigation.

Page 26
[Technical Documentation]

Authentication
All requests to any API use

HTTPS basic auth. Get a
quick overview of how to

handle these authentication
specifications.

Merchant Keys and
Environment

Find more about Processing
API Keys and Merchant API
Keys and how to use them
when setting up requests
through the TEST or LIVE

Environments.

Languages
Our APIs offer multiple

language options. Learn how
to enable them.

Navigation and Pagination
Understand how to filter and

navigate responses.

If you are a merchant, you can use our Merchant API to create sub-merchants. The main
merchant is responsible for onboarding each individual sub-merchant and it can also label
accounts, set the hierarchy and customize white label features for the corresponding sub-
merchants.

Associated to your main business account you can create multiple users' accounts. Each user
account should correspond to a staff member. Individual users can have different sets of
permissions associated with the authorization group they belong to.

Page 27
[Technical Documentation]

Merchants and Sub-merchant Accounts
Create your merchant account and onboard

sub-merchants seamlessly.

Navigation and Pagination
Make things easier on your team and

distribute permissions that fit your
operations.

02.1_Authentication

All requests to the APIs must use HTTPS. In our examples, we use curl, but any language-

specific HTTPS request method or library will work. All requests to the API use HTTPS Basic

Auth. If your library doesn't support it as a function, you can add the following header to your

requests.

Basic Authorization

Authorization: Basic {credentials}

For requests from the server-side, {credentials} should be replaced with the base64 encoded

string accountId:privateKey. For requests from the client-side, {credentials} should be replaced with

the base64 encoded string publicKey.

Never expose your private key on the client-side!

Keep your transactions secure and your clients’ information safe.

If you are not using the correct authentication, you’ll receive a 401 or 403 HTTP error. Merchant

server webhooks should use HTTPS, and self-signed certificates are not accepted. During

Page 28
[Technical Documentation]

development, it might be helpful using a service such as ngrok to expose an HTTPS tunnel to

your local environment.

02.2_API Keys and Environment

Merchant Keys and the Environment you set are essential for communicating with the

Payshop Online Payments platform throughout your payment operation.

Different combinations between the Merchant API Keys or Processing API Keys and your

Account ID grant authentication in your requests. It is important to be well aware of when to

use each of the keys and how to gain access to them.

Environments can be set to TEST or LIVE depending on where you are at with your operations.

If you are looking to test new features or still going through onboarding, use TEST. When your

operations are up and running, LIVE should be the standard.You can also find these account

details on the Dashboard Settings screen if you are a Dashboard user, which we recommend

for ease of access and a user-friendly work environment.

● Public Key

Used in requests coming from the client-side, to create Dynamic Forms and

Instruments.

● Account ID + Private Key

Used in requests coming from the merchant server, to create Charges, Payments,

Reversals, and Refunds, as well as accessing management APIs. This key SHOULD

NEVER BE SHARED in client-side code.

● Environment

TEST or LIVE, corresponding to https://api.switchpayments.com/v2/ and

https://api.switchpayments.com/v2/, respectively. The v2 part of the URL corresponds to API

versioning.

GET /v1/merchants/{merchantId}/keys

Get API keys corresponding to a specific merchant.

https://ngrok.com/

Page 29
[Technical Documentation]

 Result Parameter

collection Array

A list contains all the API key objects.

id String

Unique identifier for the API key.

active Boolean

Whether the key is currently active.

authorization_group JSON Object

The authorization group associated with the key.

description String

The key´s description.

key String

The API key.

REQUEST

 $ curl GET https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/keys -u accountId:apiKey

RESULT: HTTP 200

{

 "collection": [

 "...",

 {

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "active": true,

 "authorization_group": null,

 "description": "Default Keys",

 "key": "3eva1vGdMdg0GNLiArtNcXL4WgQtL4sJLCplXzfFCyKRZJCQYSIPUewelaJJdQ4"

 },

 "..."

]

 }

Page 30
[Technical Documentation]

POST /v1/merchants/{merchantId}/keys

Create API Keys.

 Request Parameter

active Boolean

Whether the key is currently active or not.

description String

The key's description.

authorization_group String

The authorization group associated with the key.

REQUEST

 $ curl -vX POST https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/keys -u accountId:apiKey -d '{

 "active": true,

 "description": "Default Keys",

 "authorization_group": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954" }'

 Result Parameter

id String

Unique identifier for the API key.

active Boolean

Whether the key is currently active or not.

authorization_group JSON Object

The authorization group associated with the key.

Page 31
[Technical Documentation]

description String

The key´s description.

key String

The API key.

RESULT: HTTP 201

 {

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "active": true,

 "authorization_group": null,

 "description": "Default Keys",

 "key": "3eva1vGdMdg0GNLiArtNcXL4WgQtL4sJLCplXzfFCyKRZJCQYSIPUewelaJJdQ4"

 }

Create API key without required fields

It is not possible to create API Keys without registering all the required fields. Tending to this

error case, a list with all the invalid fields and the respective errors is returned.

REQUEST

 $ curl -vX POST https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/keys -u accountId:apiKey -d '{

"active": true

 }'

 Result Parameter

message String

String with the error details, in this case: "Invalid parameters".

parameters JSON Object

 A list with all the invalid fields and the respective errors.

RESULT: HTTP 201

Page 32
[Technical Documentation]

 {

 "message": "Invalid parameters",

 "parameters": {

 "description": [

 "This field is required."

],

 "authorization_group": [

 "This field is required."

]

 }

 }

02.3_API key ID

It is possible to search API Keys through their respective id's. The API key ID is also a resource

to consider when you are looking to make changes to existing API Keys and the ways in which

you identify them.

GET /v1/merchants/{merchantId}/keys/{apiKeyId}

Get details on the Merchant API key using its id.

 Result Parameter

id String

Unique identifier for the API key.

active Boolean

Whether the key is currently active or not.

authorization_group JSON Object

The authorization group associated with the key.

description String

The key´s description.

key String

The API key.

Page 33
[Technical Documentation]

REQUEST

 $ curl -vX GET https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/keys/{apiKeyId} -u

accountId:apiKey

RESULT: HTTP 200

 {

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "active": true,

 "authorization_group": null,

 "description": "Default Keys",

 "key": "3eva1vGdMdg0GNLiArtNcXL4WgQtL4sJLCplXzfFCyKRZJCQYSIPUewelaJJdQ4"

 }

PATCH /v1/merchants/{merchantId}/keys/{apiKeyId}

Get details on the Merchant API key using its id.

 Request Parameter

active Boolean

Whether the key is currently active or not.

description String

The key’s description.

authorization_group JSON Object

The authorization group associated with the key.

REQUEST

Page 34
[Technical Documentation]

 $ curl -vX GET https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/keys/{apiKeyId} -u

accountId:apiKey

Result Parameter

id String

Unique identifier for the API key.

active Boolean

Whether the key is currently active or not.

authorization_group JSON Object

The authorization group associated with the key.

description String

The key´s description.

key String

The API key.

RESULT: HTTP 200

 {

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "active": true,

 "authorization_group": null,

 "description": "Default Keys",

 "key": "3eva1vGdMdg0GNLiArtNcXL4WgQtL4sJLCplXzfFCyKRZJCQYSIPUewelaJJdQ4"

 }

DELETE /v1/merchants/{merchantId}/keys/{apiKeyId}

Page 35
[Technical Documentation]

Delete a Merchant API key using its id.

REQUEST

 $ curl -vX DELETE https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/keys/{apiKeyId} -u

accountId:apiKey

02.4_Languages

The Payshop Online Payments platform APIs support calls in multiple languages. This means

that you can set up the desired language to be applied in the responses. To do so, you only

need to include the respective language code in the HTTP header Accept-Language.

In case the target language is not available, the response will be generated in the default en-

US. The following table includes our currently available language options.

 Language Header

 English (USA)

Accept-Language: ‘en-US’

 Portuguese (Portugal)

Accept-Language: ‘pt-PT’

 Portuguese (Brazil)

Accept-Language: ‘pt-BR’

02.5_Navigation and Pagination

When making requests to APIs that might generate multiple pages of results, only the first

page is presented by default. This is to ensure there is no decline in performance when

handling substantial volumes of information.

Page 36
[Technical Documentation]

If you intend to access responses from other pages, mind the following procedure using as an

example the GET v1/merchants/{id}/children endpoint which fetches the list of sub-merchants

associated with a specific merchant.

GET /v1/merchants/{id}/children

 Method Path Description

 GET

Sandbox

https://merchant-

api.switchpayments.com/v1/merchants/{id}/children

Production

https:/merchant-api.switchpayments.com/v1/

merchants/{id}/children

 List available

 sub-merchants.

 Request Parameter

page Number Required

The page you want to consider for your list of results.

REQUEST EXAMPLE

 $ curl -vX GET https://merchant-

api.switchpayments.com/v1/merchants/{id}/children?page=3?merchant_id=accountId -u accountId:APIKey

RESPONSE EXAMPLE

https://merchant-api-test.switchpayments.com/v1/merchants/%7Bid%7D/children
https://merchant-api-test.switchpayments.com/v1/merchants/%7Bid%7D/children

Page 37
[Technical Documentation]

 {

 "collection": [

 {

 "account_id": "OkJ4tL0eJuItLfDzGjwnDxVr6xE5HJcXw8oUbvaUYMracs",

 "account_type": "test",

 "name": "Candy shop",

 "metadata": {

 "address": "Braga"

 },

 "approved": true,

 "created_at": "2020-10-23T15:00:02.090528+00:00",

 "updated_at": "2020-10-23T17:45:52.942176+00:00",

 "whitelabel_settings": "63f6d61deacfe8579e6499d3b62b92b959ad335b5f931679"

 },

 {

 "account_id": "ofAB1Ec0LBEv8tXtKyZrBCVhMAMtiFIV9fO6SNAzNgDK51fLnov",

 "account_type": "test",

 "name": "test dispute",

 "metadata": {

 "address": "place"

 },

 "approved": true,

 "created_at": "2020-10-08T09:56:09.071632+00:00",

 "updated_at": "2020-10-08T09:56:09.071658+00:00"

 },

 {

 "account_id": "cvG0nPy1QYpZx6VyNCrZ5DaxZVwqOxi2PS3RedeVuVrVzrrbE",

 "account_type": "test",

 "name": "Demo",

 "metadata": {

 "address": "Porto"

 },

 "approved": true,

 "created_at": "2020-09-23T11:00:12.459745+00:00",

 "updated_at": "2020-09-23T11:00:12.459787+00:00"

 }

],

 "filters": {},

 "pagination": {

 "page": 3,

 "per_page": 30,

 "total_pages": 3,

 "total_items": 3

 }

Page 38
[Technical Documentation]

 }

02.6_Merchant and Sub-Merchants Accounts

As we have seen, the business account holds information that is fundamental to your

communications with the Payshop Online Payments platform and the success of your

transactions. Setting up a business account with extensive information that mirrors your

company is important to keep your payment operation up and running.

The main merchant is responsible for onboarding each individual sub-merchant. The

onboarding process consists of creating a business account on behalf of the sub-merchant.

The main Merchant needs only to be aware of the parent account and register its id.

Merchants accounts can be set to TEST or LIVE. You can choose how to label the accounts and

the hierarchy set between merchant and sub-merchants. When creating a merchant account,

you can also register White Label settings, which grant for the customization of your

workspace in case you are using the Dashboard.

02.6.1_Merchants

The available operations in regards to Merchants include searching for Merchants by id and

creating Merchants from scratch. It is also possible to make changes to existing Merchant

accounts, as well as delete them.

POST /v1/merchants

Create Merchant.

Request Parameters

Page 39
[Technical Documentation]

account_type String

The type of the account (“live” or “test”).

name String

The Merchant’s name.

address String

Physical location for the Merchant or sub-merchant account being created.

parent String (Optional)

If we are creating a sub-merchant, set the parent's account ID here.

REQUEST

 $ curl -vX POST https://merchant-api.switchpayments.com/v1/merchants -u accountId:apiKey -d '{

 "account_type": "test",

 "name": "ACME Corp.",

 "parent": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954"

 }'

Result Parameters

account_id String

Unique identifier for the Merchant.

account_id String

The type of the account ("live" or "test").

name String

The Merchant’s name.

children Array

Page 40
[Technical Documentation]

sub-merchants of this account.

RESPONSE: HTTP 201

 {
 "account_id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "account_type": "test",

 "name": "ACME Corp.",

 "children": []

 }

Create Merchant without required fields

It is not possible to create Merchants without registering all the required fields. Tending to this

error case, a list with all the invalid fields and the respective errors is returned.

REQUEST

$ curl -vX POST https://merchant-api.switchpayments.com/v1/merchants -u accountId:apiKey -d '{

 "name": "ACME Corp."

 }

 Result Parameters

message String

String with the error details, in this case "Invalid Parameters".

parameters JSON Object

A list with all the invalid fields and the respective errors.

RESPONSE: HTTP 400

{

 "message": "Invalid parameters",

Page 41
[Technical Documentation]

 "parameters": {

 "account_type": [

 "This field is required."

]

 }

 }

02.6.2_Merchant ID

It is possible to get details on Merchants using their respective id. The Merchant id is also a

resource to consider when you are looking to make changes to existing Merchant accounts.

GET /v1/merchants/{id}

Get merchant details using this respective id.

Result Parameters

account_id String

Unique identifier for the Merchant.

account_id String

The type of the account ("live" or "test").

name String

The Merchant’s name.

children Array

sub-merchants of this account.

REQUEST

$ curl GET https://merchant-api.switchpayments.com/v1/merchants/{id} -u accountId:apiKey

RESPONSE: HTTP 200

{

Page 42
[Technical Documentation]

 "account_id": "<account_id>",

 "account_type": "test",

 "name": "ACME Corp.",

 "archived": false,

 "children": []

 }

PATCH /v1/merchants/{id}

Make changes to merchant details using its id

Result Parameters

account_id String

Unique identifier for the Merchant.

account_id String

The type of the account ("live" or "test").

name String

The Merchant’s name.

children Array

sub-merchants of this account.

REQUEST

$ curl -vX PATCH https://merchant-api.switchpayments.com/v1/merchants/{id} -u accountId:apiKey -d '{

 "name": "ACME"

 }

RESPONSE: HTTP 200

{

Page 43
[Technical Documentation]

 "account_id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "account_type": "test",

 "name": "ACME Corp.",

 "children": []

 }

DELETE /v1/merchants/{id}

Delete merchant

REQUEST

 $ curl -vX DELETE https://merchant-api.switchpayments.com/v1/merchants/{id} -u accountId:apiKey

02.6.3_Sub-merchants
The available operations in regard to sub-merchants include searching sub-merchants using

their id, making changes to existing sub-merchant Accounts and deleting sub-merchants.

sub-merchants are children to Merchant accounts. Therefore it is important to keep in mind

that a sub-merchant always has a parent Merchant Account.

GET /v1/merchants/{id}/children

Get merchant details using this respective id.

Result Parameter

collection Array

A list that contains all the merchant objects.

 account_id String

Unique identifier for the merchant.

Page 44
[Technical Documentation]

 account_type String

The type of account (“live” or “test”)

name String

The Merchant’s name.

children Array

Sub-merchants of this account.

REQUEST

 $ curl GET https://merchant-api.switchpayments.com/v1/merchants/{id}/children -u accountId:apiKey

RESPONSE: HTTP 200

 {

 "collection": [

 "...",

 {

 "account_id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "account_type": "test",

 "name": "ACME Corp.",

 "children": []

 },

 "..."

]

 }

POST /v1/merchants/{id}/children

Get merchant details using this respective id.

Result Parameter

collection Array

A list that contains all the merchant objects.

Page 45
[Technical Documentation]

 account_id String

Unique identifier for the merchant.

 account_type String

The type of account (“live” or “test”)

name String

The Merchant’s name.

children Array

Sub-merchants of this account.

02.7_Users and Authorization Groups

The way you set up authorizations groups and users defines the dynamics of your team when

using the Payshop Online Payments platform’s APIs. Make sure you pay close attention to your

users, keep the permissions up to date.

02.7.1_Users

The available operations for the Users resource are GET, and POST.

GET /v1/merchants/{merchantId}/users

Get merchant details using this respective id.

Result Parameter

collection Array

A list that contains all the User objects.

 id String

Page 46
[Technical Documentation]

Unique identifier for the user.

 email String

User’s email address.

last_login String

Date of last login.

 global_permissions JSON Object

Global permissions for the user.

 merchant_permissions JSON OBJECT

Merchant’s permissions for the user.

own_merchants_permissions JSON OBJECT

Merchant's permissions only for authorization groups linked to the User.

 tfa_via_app_enabled Boolean

 Whether the user has two factor authentication enabled for this account.

 merchants Array

Merchants the user has access to..

own_merchants_permissions Array

Authorization groups linked with this user.

REQUEST

 $ curl GET https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/users -u accountId:apiKey

RESPONSE: HTTP 200

 {

 "collection": [

 "...",

 {

Page 47
[Technical Documentation]

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "email": "john@acme.com",

 "last_login": "2019-11-07 11:52:11",

 "name": "John Doe",

 "global_permissions": {},

 "merchants_permissions": {

 "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954": {

 "com.switchpayments.dashboard.transactions_read": true,

 "com.switchpayments.dashboard.refund": true

 }

 },

 "own_merchants_permissions": {

 "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954": {

 "com.switchpayments.dashboard.transactions_read": true,

 "com.switchpayments.dashboard.refund": true

 }

 },

 "tfa_via_app_enabled": false,

 "merchants": [],

 "authorization_groups": null

 },

 "..."

]

 }

POST /v1/merchants/{merchantId}/users

Request Parameter

email Array

The user’s email address.

 name String

The user’s name.

Result Parameter

Page 48
[Technical Documentation]

id String

Unique identifier for the user.

 email String

User’s email address.

 last_login String

Date of last login.

name String

User’s name.

 global_permissions JSON Object

Global permissions for the user.

 merchant_permissions JSON OBJECT

Merchant’s permissions for the user.

own_merchants_permissions JSON OBJECT

Merchant's permissions only for authorization groups linked to the User.

REQUEST

 $ curl -vX POST https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/users -u

accountId:apiKey -d '{

 "email": "john@acme.com",

 "name": "John Doe"

 }'

RESPONSE: HTTP 200

{

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "email": "john@acme.com",

 "last_login": null,

Page 49
[Technical Documentation]

 "name": "John Doe",

 "global_permissions": {},

 "merchants_permissions": {},

 "own_merchants_permissions": {},

 "tfa_via_app_enabled": false

 }

Create User without required fields

It is not possible to create Users without registering all the required fields. Tending to this error

case, a list with all the invalid fields and the respective errors is returned.

REQUEST

$ curl -vX POST https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/users -u accountId:apiKey -d '{

 "name": "John Doe"

 }'

Response Body Parameters

message string

String with the error details, in this case "Invalid Parameters".

parameters JSON object

A list with all the invalid fields and the respective errors.

RESULT: HTTP 400

{

 "message": "Invalid parameters",

 "parameters": {

 "email": [

 "This field is required."

]

 }

 }

Page 50
[Technical Documentation]

02.7.2_User ID

The available operations for the User ID resource are PATCH and DELETE.

POST /v1/merchants/{merchantId}/users/{userId}

 Request Parameter

permissions JSON object

Key value object of the permissions the User should or should not have.

authorization_groups Array (Optional)

List of Authorization Groups id the User should be associated with. This PATCH will

remove any Groups not present in this list, in case the User is associated with them.

REQUEST

$ curl -vX PATCH https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/users/{userId} -u

accountId:apiKey -d '{

 "permissions": {

 "refund": true,

 "routing_management": true,

 "read_processing_api_keys": false

 },

 "authorization_groups": [

 "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "674ae7bhn83927h5cf6hu87d8hfoiuhiudspwef8429jlsdf"

]

 }'

 Result Parameter

id string

Unique identifier for the User.

Page 51
[Technical Documentation]

email string

The User’s email address.

last_login date

Date of last login.

name string

User’s name.

global_permissions JSON object

Global permissions for the User.

merchants_permissions JSON object

Merchant permissions for the User.

own_merchants_permissions JSON object

Merchant's permissions only for Authorization Groups linked to the User.

tfa_via_app_enabled boolean

Whether the user has Two Factor Authentication enabled for this account or not.

merchants array

Merchants the User has access to.

authorization_groups array

Authorization Groups linked to this User.

RESULT: HTTP 200

{

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "email": "john@acme.com",

 "last_login": "2019-11-07 11:52:11",

 "name": "John Doe",

 "global_permissions": {},

 "merchants_permissions": {},

Page 52
[Technical Documentation]

 "own_merchants_permissions": {},

 "tfa_via_app_enabled": false,

 "merchants": [],

 "authorization_groups": null

 }

DELETE /v1/merchants/{merchantId}/users/{userId}

REQUEST

$ curl -vX DELETE https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/users/{userId} -u

accountId:apiKey -d '{

 "name": "ACME"

 }

02.7.3_Authorization Groups

The available operations for the Authorization Groups resource are GET, and POST.

GET /v1/merchants/{merchantId}/authorization-groups

REQUEST

$ curl GET https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/authorization-groups -u

accountId:apiKey

 Result Parameter

collection Array

A list that contains all the Authorization Group objects.

id String

Unique identifier for the Authorization Group.

Page 53
[Technical Documentation]

type String

The Authorization Group’s type.

name String

The Authorization Group’s name.

permissions JSON object

The Authorization Group’s permissions.

RESULT: HTTP 200

{

 "collection": [

 "...",

 {

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "type": "merchant",

 "name": "Analysts Permissions",

 "permissions": {

 "refund": true,

 "routing_management": true,

 "read_processing_api_keys": false

 }

 },

 "..."

]

 }

POST /v1/merchants/{merchantId}/authorization-groups

 Request Parameter

name String

The name given to the Authorization Group.

permissions JSON Object The Authorization Group’s permissions.

Page 54
[Technical Documentation]

REQUEST

$ curl -vX POST https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/authorization-groups -u

accountId:apiKey -d '{

 "name": "Analysts Permissions",

 "permissions": {

 "refund": true,

 "routing_management": true,

 "read_processing_api_keys": false

 }

 }'

 Result Parameter

id String

Unique identifier for the Authorization Group.

type String

The Authorization Group’s type.

name String

The Authorization Group’s name.

permissions JSON Object

The Authorization Group’s permissions.

RESULT: HTTP 201

{

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "type": "merchant",

 "name": "Analysts Permissions",

 "permissions": {

 "refund": true,

 "routing_management": true,

 "read_processing_api_keys": false

 }

 }

EXAMPLES

Page 55
[Technical Documentation]

Create Authorization Group without required fields

Create Authorization Group without required fields.

REQUEST

$ curl -vX POST https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/authorization-groups -u

accountId:apiKey -d '{

 "name": "Analysts Permissions"

 }'

 Result Parameter

message String

String with the error details, in this case "Invalid Parameters".

parameters JSON Object

A list with all the invalid fields and the respective errors.

RESULT: HTTP 400

{

 "message": "Invalid parameters",

 "parameters": {

 "permissions": [

 "This field is required."

]

 }

 }

02.7.4_Authorization Group ID

The available operations for the Authorization Group ID resource are GET, PATCH, and DELETE.

GET /v1/merchants/{merchantId}/authorization-groups/{authorizationGroupId}

Page 56
[Technical Documentation]

REQUEST

$ curl GET https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/authorization-groups -u

accountId:apiKey

 Result Parameter

id String

Unique identifier for the Authorization Group.

type String

The Authorization Group’s type.

name String

The Authorization Group’s name.

permissions JSON Object

The Authorization Group’s permissions.

RESULT: HTTP 200

{

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "type": "merchant",

 "name": "Analysts Permissions",

 "permissions": {

 "refund": true,

 "routing_management": true,

 "read_processing_api_keys": false

 }

 }

PATCH /v1/merchants/{merchantId}/authorization-groups/{authorizationGroupId}

REQUEST

$ curl -vX PATCH https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/authorization-

groups/{authorizationGroupId} -u accountId:apiKey -d '{

Page 57
[Technical Documentation]

 "name": "Analysts Permissions",

 "permissions": {

 "refund": true,

 "routing_management": true,

 "read_processing_api_keys": false

 }

 }'

 Request Parameter

name String

The Authorization Group’s name.

permissions JSON Object

The Authorization Group’s permissions.

RESULT: HTTP 200

{

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "type": "merchant",

 "name": "Analysts Permissions",

 "permissions": {

 "refund": true,

 "routing_management": true,

 "read_processing_api_keys": false

 }

 }

 Result Body Parameters

id String

Unique identifier for the Authorization Group.

type String

The Authorization Group’s type.

Page 58
[Technical Documentation]

name String

The Authorization Group’s name.

permissions JSON Object

The Authorization Group’s permissions.

DELETE
/v1/merchants/{merchantId}/authorization-groups/{authorizationGroupId}

REQUEST

$ curl -vX DELETE https://merchant-api.switchpayments.com/v1/merchants/{merchantId}/authorization-

groups/{authorizationGroupId} -u accountId:apiKey

Next Steps

Now that you have gone through the Merchant starting kit, head over to the Integrating with the Payshop Online

Payments Platform to learn more about the integration patterns available and choose the one that best suits your

needs.

03_Permissions

Permissions in the Payshop Online Payments platform are normally associated with an

authorization group. You can add new permissions or edit existing ones by tapping into

Settings > Security and Users in the Dashboard. You should be able to find the permissions in

question under Authorization Groups.

Each authorization group consists of a list of specific users selected from the registered users

in your team. Therefore, it’s important to consider which authorizations are necessary for each

staff member when you set up your teams.

● Can these permissions allow for more than what the user needs?

Page 59
[Technical Documentation]

● Can these permissions allow for more than what the user needs?

● Can the user share these permissions with someone that might not be aware of the

consequences of bad usage?

● Does the permission expose the user to unwanted information?

● Can another permission provide the same benefit with less added risk?

Analytics

Having permissions to Analytics, the user will be able to access the Analytics tab, which is

available in the Dashboard navigation bar.

Transactions

Enabling Transactions for an authorization group or specific users grants access to the list of

transactions in the Transactions tab of the Dashboard. To be able to perform actions on said

transactions, users need further permissions, as described below.

 Permission Description

 Create Charge

The user can create charges. This action is performed via API

and also using the Dashboard. With this permission the user is

able to initiate checkouts using the Create Checkout button in

the Dashboard.

Page 60
[Technical Documentation]

 Create Instrument

The user can create instruments.

This action is performed via API.

 Create Refund

The user is able to refund payments It allows for whole and

partial refunds. Refunds can never exceed the total amount

paid. Refunds can be performed via API or through the

Dashboard by hitting the Refund button.

 Create Reversal

The user is able to void transactions. It can be performed

via API and also by hitting Void on the Dashboard.

Channels

Enabling Channels for an authorization group allows the respective users to access the

Channels tab in the Dashboard. This grants them access to the list of available channels and

routing rules.

 Permission Description

 Activate Channels

The user can enable and disable channels.

Page 61
[Technical Documentation]

 Configure Channels The user is able to edit channel details and keys.

 Manage Routing Rules

The user is able to create routing rules and also edit and delete

existing ones.

Events

Enabling Events for an authorization group allows the respective users to access the Events

tab in the Dashboard. This allows them to explore listed events and all of their details.

 Permission Description

 Resend

The user is able to resend event communications to businesses.

 Manage Destinations

The user can configure events’ delivery.

Audit log?
The audit log registers changes made to elements in the Payshop Online

Payments platform.

Every time a given resource is created, updated, or deleted, an audit log event is

Page 62
[Technical Documentation]

created. Audit logs include the information being altered and also when

and by whom the changes were made.

 Event Schema Description

 Authorization Group

 Audit Log

Describes changes made to authorization groups.

 Charge Audit Log

Describes changes made to a charge element.

 Destination Audit Log

Describes changes made to destinations.

 Events Checker Report

Contains all the failed dispatches of the last 24 hours.

 Lifecycle Event Describes each transaction.

 Business Audit Log Contains changes made to a business account.

Page 63
[Technical Documentation]

 Report Status

Contains the status of a report. Every time the state of a report

changes an event with details on that report and its status is

generated.

 Settlements Batch Describes settlement batches.

 Settlements Source Group Contains changes made to source groups.

 Terminal Audit Log Registers changes made to terminals

 Terminal Session
Registers the end of a terminal session and it includes

details on said session.

Reporting

Enabling Reporting for an authorization group allows the respective users to access the

Reporting tab in the Dashboard.

 Permission Description

 Manage Reporting

The user is able to create, read, edit, and delete reports,

schedules, and reporting templates.

Page 64
[Technical Documentation]

Settings

Under Settings you can find permissions to make changes to the configurations of user and

business accounts. Note that some of these permissions are only available for staff members.

 Permission Description

 Manage Users

The user is able to create and manage user accounts in the current

business account, it does not include sub-business accounts.

Please note that a user with this permission is able to edit the

permissions of any other user including their own.

 Read Processing API Keys Ability to read Processing API keys.

 Manage Processing API Keys Ability to generate, edit, and delete Processing API keys.

 Read Authorization Groups The user can read authorization groups on that account only.

 Manage Authorization

 Groups

The user is able to generate and make changes to authorization

groups in the current business account, it does not include sub-

Page 65
[Technical Documentation]

business accounts. This permission is also required when cloning

authorization groups.

User and Business

Under User and Businesses you can find permissions to make changes to the configurations

of user accounts and business account environments. Note that User permissions are only

made available to staff members.

 Permission Description

 Manage Business

 Test Accounts

Ability to create and edit test sub-accounts, create and edit users

from test sub-accounts, and create and edit authorization groups

from test sub-accounts.

 Manage Business

 Live Accounts

Ability to create and edit live sub-accounts, create and edit users

from live sub-accounts, and create and edit authorization groups

from live sub-accounts.

Page 66
[Technical Documentation]

04_Integrating

Every stakeholder, one integration.

With the constant evolutions in the payments landscape, ensuring that your payment

operation supports current and future Payment Methods is paramount. By integrating the

Payshop Online Payments platform, you get access to every present and future Payment

Method, as well as all the tools required to run a professional and comprehensive payments

operation.

Warning: For online payments regarding Debit/Credit Cards, the only integration pattern

Payshop allows is Dynamic Forms. In this payment method, the other two integration patterns

(Hosted Checkout and REST) are not allowed to be implemented by the development Team

integrating with Payshop Online Payments. Obviously, this rule does not apply to the Plugins

that Payshop provides.

Dynamic Forms
Add new Payment Channels
without any changes to your

code.

Hosted Checkout

Streamline your checkout
process.

REST Integration
Enable custom Transaction

Flows.

The Payshop Online Payments platform’s architecture was designed with a single integration

flow in mind. Businesses are expected to integrate with the platform once and be able to

process any payment methods, without any changes to their code. This reduces development

effort and maintenance costs, whilst also improving your time to market. To better understand

how to conduct integration access the following resources.

Page 67
[Technical Documentation]

Transaction Flows
Understand the execution
flows of your Transactions.

Event Handling
Deconstruct your

Transactions and keep track
of their statutes.

Error Codes
Check out the codes and

descriptions of all errors that
may occur when you

communicate with the
Payshop Online Payments

platform APIs.

There are three possible integration patterns, which offer differing degrees of liberty to

businesses. These are Dynamic Forms, Hosted Checkout, and REST Integration.

What is the right integration for me?

We recommend choosing Dynamic Forms, as this option provides an efficient, out-of-the-box

solution that requires low integration effort and supports a wide variety of use-cases. Our REST

API integration is recommended for singular scenarios where Dynamic Forms are unable to

comply with your business requirements.

In order to better understand which integration pattern would be better suited to you, please

have a look at the table below, which compares these two patterns from a requirements

perspective.

Dynamic Forms

Hosted Checkout

REST Integration

Development
Effort

Low Low High

Maintenance
Effort

Low Low High

UI Library Yes Yes No

Customizable
Look & Feel

Yes Yes Yes

Page 68
[Technical Documentation]

Customizable
Transaction
Flow

No

No Yes

Web & Mobile Yes Yes Yes

Native Apps No No Yes

PCI-DSS Filled in and signed
SAQ A

Filled in and signed
SAQ A

Filled in and signed SAQ A-
EP along with quarterly

scans by an ISV

There are several steps to take full advantage of the Payshop Online Payments platform's

processing capabilities. Not all the steps are required to process payments, but it is good to

have the full picture before making your integration options. First, it is important to go through

the steps involved in how we help our clients handle transactions.

https://www.pcisecuritystandards.org/documents/PCI-DSS-v3_2-SAQ-A.pdf
https://www.pcisecuritystandards.org/documents/PCI-DSS-v3_2-SAQ-A.pdf
https://www.pcisecuritystandards.org/documents/PCI-DSS-v3_2_1-SAQ-A_EP.pdf
https://www.pcisecuritystandards.org/documents/PCI-DSS-v3_2_1-SAQ-A_EP.pdf
https://www.pcisecuritystandards.org/assessors_and_solutions/approved_scanning_vendors

Page 69
[Technical Documentation]

1. Display a Form

The form through which the customer chooses a payment method can be created by

you. But keep in mind that if you use Dynamic Forms to do it, your form will adapt to

future payment methods without requiring additional development.

2. Create Charge and Instrument

These are the minimum steps required to process a transaction using the Payshop

Online Payments platform.

3. Instrument Flows

Handle methods that require redirection or displaying references.

4. Event Handling

How your server keeps track of transactions.

5. Capturing Funds Later

It applies to recurring or auth-capture methods.

Page 70
[Technical Documentation]

Elements of a Transaction

Every Transaction, regardless of the payment method, has the same Elements.

Parameter Description

Charge

The Merchant’s intent to initiate a Payment Flow. In this step,
the Payment Method and Provider are chosen and
configured by the Merchant.

Instrument The Customer authorizes the Transaction by sending
Payment details.

Payment The fund transfer per se.

Reversal Element used for reversing a capture or Refund that has not
yet been cleared, or for voiding an authorization.

Refund Returning the funds to the customer. This only applies to
refundable Payment Methods

Instrument Properties

Instruments from different Payment Methods have specific properties that define how they
can be used.

Parameter Description

Captured on Creation

A Payment is created automatically when, on the client-side,
an Instrument is created.

Recurring Multiple Payments can be created from a Recurring
Instrument.

Refundable Refunds can be created.

Redirect The customer must be redirected to an external page to
complete the Transaction. This process is handled
automatically by the Dynamic Forms and JS lib.

Page 71
[Technical Documentation]

Reference The customer will be shown a payment reference to push the
funds to.

Dynamic Forms

The main aim of our Dynamic Forms solution is to provide a flexible UI for web, mobile and

POS, that is able to process any current and future Payment Methods without requiring any

changes to the code.

Dynamic Forms is composed of a Javascript Client-Side Library that can be easily inserted into

your checkout page. It will be responsible for rendering the UI and handling the required

communication with the Payshop Online Payments platform to execute any type of

Transaction.

Tailor-Made

With Dynamic Forms, the customization of your checkout process is merely

one click away. This integration grants you an array of different Payment

Methods that can be made available to your Customers immediately and

without fuss.

Future Proof

Using Dynamic Forms, the work required to stay up to date is offloaded

from your team. This integration option dynamically supports new payment

options via communication with the Payshop Online Payments platform,

without requiring modifications.

Flexible

Dynamic Forms automatically prepares your website to collect different

data points and support different user interaction flows, whilst allowing you

to customize the look and feel.

Page 72
[Technical Documentation]

Fast

All the technical complexity is handled by a single client-side library that is

responsible for user interaction and communication with the Payshop

Online Payments platform.

Easy to Maintain

By leveraging server-side communication to dynamically adapt the user

interface and associated experience, Dynamic Forms support any current

or future Payment Methods, thus reducing the maintenance required to

stay up to date.

Simplified Compliance

Uses by default an iframe configuration, which ensures the customer

Payment data never touches your website. From a PCI-DSS compliance

perspective, this reduces the burden required to process payments.

REST Integration (not allowed for cards payment method)

Whilst having a turnkey solution to process payments on your website can be very useful,

there might be scenarios where the customizations needed require a bespoke solution. If you

need to support different platforms, namely web, native mobile apps, and IoT devices, or are

looking for a customized user experience with additional steps, REST Integration might be the

answer for you.

Our REST Integration leverages the Payshop Online Payments platform API endpoints to

orchestrate Transaction execution using a host-to-host communication. You become

responsible for rendering the forms and handling user interaction, allowing you to tailor the

components to your design and user experience guidelines.

What about new Payment Methods?

The REST API has an endpoint that specifies which components the UI should

have, given the Payment Methods active at the moment.

Page 73
[Technical Documentation]

Custom Transaction Flows

The number of steps and the input collected from the user to execute a

Transaction can be personalized, as long as the three required API calls are

executed in between.

Interoperability

Given that this pattern does not rely on a client-side library to collect data,

it has a broader reach by being able to support any frontend language,

application, or platform where it is possible to execute a REST API call. One

such example would be a native mobile application for Android or iOS.

Bespoke User Experience

This integration option allows you to set up the UI according to your

specifications, ensuring a consistent design language throughout your

application and following your preferred user interaction patterns.

What about Compliance

REST Integration requires PCI DSS compliance, which means having

servers scanned on a quarterly basis by an Approved Scanning Vendor

(ASV), and at least a filled and signed SAQ A-EP.

Page 74
[Technical Documentation]

Next Steps

Now that we have outlined the existing integration patterns with the Payshop Online Payments platform, feel free

to jump over to your integration of choice.

Dynamic Forms
Add new Payment Channels
without any changes to your

code.

Hosted Checkout

Streamline your checkout
process.

REST Integration
Enable custom Transaction

Flows.

04.1_Dynamic Forms

Integrating with the Payshop Online Payments Platform

Dynamic Forms is composed of a Javascript client-side library. The library can be easily

included in your checkout page and will be responsible for rendering the UI and handling the

required communication with the Payshop Online Payments platform to execute any type of

transaction.

The Payshop Online Payments platform enables real-time transactions on an any-to-any basis,

be it multi-channel, multi-network, multi-method, or multi-currency. This abstraction feeds a

shared, event-based database on top of which runs multiple internal applications and external

value-added services that make up the Platform Components.

Integrating with the Payshop Online Payments platform requires code both on:

● The client-side, to create the form that collects customer payment data.

● The server-side, to create Charges. This step is required to authenticate and avoid

fraudulent requests.

For Dynamic Forms you should consider the following order of instructions:

Page 75
[Technical Documentation]

1. Displaying a form

2. Creating a Charge

3. Client Library Reference

After the Dynamic Forms integration, you will be able to add new Payment Channels without

any changes to your code.

04.1.1_Display Form

Each Payment Method requires specific input fields and actions from the customer, and

Dynamic Forms let you unify all these use cases in a single integration. Subsequently, enabling

additional Payment Channels and configuring Dynamic Routing and Risk management rules

is possible without having to change the integration.

To create a Dynamic Form, instantiate the client library with the environment and your public

key, and call the dynamicForms over a container in your page.

Dynamic Forms can be added to your application through a quick and simple process that

requires three steps from an integration perspective:

1. Adding an HTML container;

2. Loading our client-side library; and

3. Initializing the Dynamic Forms.

The following example shows how you can accomplish these three steps in your checkout

page.

Checkout Page

<html>

 <body>

 <!-- Step 1 -->

 <!-- DIV container that will be used to render the Dynamic Forms -->

 <!-- The UI will adapt to the space available -->

 <div id="dynamic-forms-container"></div>

 </body>

Page 76
[Technical Documentation]

 <!-- Step 2 -->

 <!-- Import Client library -->

 <script src="switch.js"></script>

 <!-- Step 3 -->

 <!-- Instatiante the client library -->

 <script>

 let formContainer = document.getElementById('dynamic-forms-container');

 let formOptions = {

 chargesUrl: 'https://your.url.com/charges/',

 merchantTransactionId: '123456',

 };

 let switchJs = new SwitchJs(SwitchJs.environments.SANDBOX, 'ACCOUNT_PUBLIC_KEY');

 switchJs.dynamicForms(formContainer);

 </script>

</html>

<html>

Add HTML container
Our library requires a DIV container to be present in the page that will be used to render the

UI. This HTML container should have a dedicated ID so you can reference it when initializing

the Dynamic Forms. In the previous example this is done by the following HTML element: <div

id="dynamic-forms-container"> </div>.

Load the client-side library
This integration mechanism uses a client-side javascript library to coordinate the execution

process. As such, it’s loaded in a standard manner as any javascript library: <script

src="switch.js"></script>

Page 77
[Technical Documentation]

Looking for more information about our Client library?

Head over to the Client Library Reference down below and review all the

functions and options available.

Initialize the Dynamic Forms
Our client library provides the functions necessary to load and initialize the UI that will process

payments. This is done essentially by performing two function calls, one to instantiate the

library itself and another to render the Dynamic Forms

Initializing the Dynamic Forms

let formContainer = document.getElementById('dynamic-forms-container');

let formOptions = {

 chargesUrl: 'https://your.url.com/charges/',

 merchantTransactionId: '123456',

 };

// 1. Instantiate

let switchJs = new SwitchJs(SwitchJs.environments.SANDBOX, 'ACCOUNT_PUBLIC_KEY');

// 2. Render

switchJs.dynamicForms(formContainer, formOptions);

The first function call will initialize the client library by indicating the environment and account

that will be used to process transactions: SwitchJs(SwitchJs.environments.SANDBOX,

'ACCOUNT_PUBLIC_KEY');

Afterward, it’s time to render the Dynamic Forms on your checkout page. To achieve this we

call the following function with the reference to the HTML element where the form will be

drawn as well as the rendering options: switchJs.dynamicForms(formContainer, formOptions);

Page 78
[Technical Documentation]

04.1.2_Create a Charge

After performing the previous steps, the Dynamic Forms have been successfully rendered in

your checkout page. The user can now choose the preferred Payment Method towards

acquiring the intended goods.

As stated in the Core Concepts section, our platform divides a transaction into three execution-

related elements: charge, instrument, and payment. The client-side library will coordinate the

creation of these elements, where required, and the associated communications with the

Payshop Online Payments platform.

One of such communication steps will be with your backend platform, in order to authenticate

the transaction being attempted and effectively create the charge. This authentication will be

done using your private API key and will ensure that both you and the customer intended to

execute the transaction. To this effect, the following steps will be executed.

1. After the customer has selected the intended payment method, the browser calls the

merchant backend through the chargesURL.

2. The merchant backend system receives a POST request containing the

merchantTransactionId to correlate the transaction being attempted and using your

Private API Key authenticates the transaction.

3. The merchant backend calls the Payshop Online Payments platform to proceed with

creating the charge.

Page 79
[Technical Documentation]

4. The Payshop Online Payments platform creates a charge and replies back with the

associated charge information, including ID.

5. The merchant backend replies back to the original call made in step 1 with the provided

charge_id.

ChargeURL Call

To execute steps 2 and 3 as previously outlined, which will lead to the creation of the Charge

by your backend system, our platform expects your API to comply with the following signature.

Path Method Description

Configured by the
chargeURL when initializing
the Dynamic Forms

POST This API call is made by the Payshop Online
Payments platform and aims to authenticate the
Charge being attempted.

Result Parameter

chargeType
String

Indicates the Payment Method that has been selected by
the customer.

merchantTransactionId
String

Parameter that univocally identifies the transaction being
attempted. The Payshop Online Payments platform will use
the merchantTransactionId that is passed when initializing
the Dynamic Form.

REQUEST EXAMPLE

$ curl -vX POST https://charge.url

 -d '{

 "chargeType": "card_onetime",

 "merchantTransactionId": "506785940"

 }'

Page 80
[Technical Documentation]

Response Body Params

id
String

The ID returned by the Payshop Online Payments platform
that uniquely identifies the Charge element for this
transaction.

RESPONSE EXAMPLE

{

 "id": "06d7c2e4145f3be209e9ab5c6ed24da8b786f"

}

API Call

As documented previously in steps 4 and 5, in order to generate a Charge element your

backend system must contact our API using the private key. Below you can find the endpoint

that should be used to execute this step as well as all the required details to perform the call.

POST v2/charges

Path Method Description

https://api.switchpayments.com/v2/charges

POST

Creates a Charge element by
using the information passed in
the body parameters.

Request Body Params

charge_type
String

(mandatory)

Indicates the Payment Method that has been selected by
the customer, should contain the value passed by our API
call.

currency
String

(mandatory)

ISO 4217 code that indicates the currency that will be used
by the transaction.

Page 81
[Technical Documentation]

amount
Number

(mandatory)

The amount that should be charged to the customer.

events_url
String

Allows you to configure the URL that will be called by the
Payshop Online Payments platform to notify about lifecycle
events related to this transaction. Please note that the URL
must use HTTPS.

redirect_url
String

(conditional)

Specifies the HTTPS URL to where the users should be sent
after they authenticated the transaction on the Payment
Method page.
This parameter is only required for Payment Methods that
require user redirection for authentication, e.g.: Paypal.

instrument_params
JSON Object

Specifies configuration parameters that are passed to the
Provider when creating the Instrument element and which
allow you to configure how the fund transfer is executed.

metadata
JSON Object

This object allows you to pass any transaction-related data
points that may be useful to be displayed in the Dashboard
for analysis purposes.

channels
Array

Gives the ability to specify which Channel should be used to
process the transaction. Using this parameter you can
leverage your business logic to select the Channel rather
than relying on Dynamic Routing.

If multiple values are present a fallback mechanism will be
used, giving precedence to the first entries.

REQUEST EXAMPLE

-u <merchant id>:<private key>"

 -d '{

 "charge_type": "card_onetime",

 "amount": 42,

 "currency": "EUR",

 "events_url": "https://your.url/v1/notificationHandler"

 }'

Page 82
[Technical Documentation]

Response Body Params

id
String

The ID that uniquely identifies the created Charge element
for this transaction.

charge_type
String

Indicates the Payment Method that will be used to process
the transaction.

charge_type_label
String

Human-friendly description of the Payment Method that
will be used to process the transaction.

currency
String

ISO 4217 code that indicates the currency that will be used
by the transaction.

amount
Number

The amount that will be charged to the customer.

confirmed
Boolean

Indicates whether the current Charge element has been
confirmed by the merchant using their private key:

● true: the Charge has been confirmed by the
merchant.

● false: the Charge has not been confirmed by the
merchant.

external
Boolean

Indicates whether the current Charge element was not
created by the Payshop Online Payments platform:

● true: the Charge has not been processed by the
Payshop Online Payments platform.

● false: the Charge has been created using the
Payshop Online Payments platform.

instrument_params
JSON Object

The configuration parameters that were specified when
creating the Charge element, which allow you to configure
how the funds’ transfer is executed by the Provider.

events_url
String

Contains the URL that will be called by the Payshop Online
Payments platform to notify about lifecycle events related to
this transaction.

redirect_url
String

The URL to where the users should be sent after they
authenticated the transaction on the Payment Method
page.

channels
Array

Documents the Channels that will be used to process the
transaction.

metadata
JSON Object

The transaction-related data points that were passed when
creating the Charge, which may be useful to be displayed in
the Dashboard for analysis purposes.

external_ids
JSON Object

Documents the Provider ID for the current charge, if
available.

Page 83
[Technical Documentation]

request_log
JSON Object

Stores information about the device that was used to create
the current Charge element, such as country, ip_address,
user_agent, and library_version.

created_at
String

Indicates the date and time when the current Charge
element was created.

updated_at
String

Documents the date and time when the last update was
performed to the current Charge.

RESPONSE EXAMPLE

{

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "charge_type": "card_onetime",

 "amount": 10,

 "currency": "EUR",

 "confirmed": false,

 "external": false,

 "instrument_params": {

 "enable3ds": true

 },

 "events_url": "https://merchant.com/events",

 "channels": [{

 "processor": "checkout",

 "id": "85a557e4fdb6c8806f413bc75fabab162828e4f95b8e6390",

 "label": "card_onetime_checkout"

 },

 {

 "processor": "acapture",

 "id": "9fb7b1e253f1c592210b7c37b40b18e576ff30995b8e40de",

 "label": "card_onetime_acapture"

 }],

 "charge_type_label": "Card One-Time",

 "redirect_url": "https://merchant.com/redirect",

 "metadata": {

 "orderId": "1337"

 },

 "external_ids": null,

 "request_log": {

 "country": "PT",

 "ip_address": "100.10.10.10",

Page 84
[Technical Documentation]

 "user_agent": "curl/7.54.0",

 "library_version": null

 },

 "created_at": "2018-06-18T10:28:36.358233+00:00",

 "updated_at": "2018-06-18T10:28:36.358258+00:00"

}

04.1.3_Client Library Reference

Our Client library provides the required functionality to initialize and operate Dynamic Forms

on your checkout page. Here you can find out more about the available functions and what

each can achieve.

SwitchJs(environment, accountPublicKey)

Constructor function to initialize the Client-Side Library

USAGE EXAMPLE

 let switchJs = new SwitchJs(SwitchJs.environments.TEST, 'ACCOUNT_PUBLIC_KEY');

 Parameters

environment String

The platform environment to which the Dynamic Forms Library will connect to process

the payments. For ease of use, our library has constants available with the

URLs.SwitchJs.environments.TEST: constant containing the test environment URL.

SwitchJs.environments.LIVE: constant containing the production URL.

accountPublicKey String

Page 85
[Technical Documentation]

The Public Key attributed to the account. Typically provided by our Sales Department

during the integration process.

The Authorization Group’s permissions.

 Return Value

 Object

 The Public Key attributed to the account. Typically provided by our Sales

 Department during the integration process.

.dynamicForms(formContainer, formOptions)

Renders the Dynamic Form in the UI. Requires the Client-Side Library to be previously
initiated.

USAGE EXAMPLE

 let formContainer = document.getElementById('dynamic-forms-container');

 let formOptions = {

 chargesUrl: 'https://your.url.com/charges/',

 merchantTransactionId: '123456',

 };

 let switchJs = new SwitchJs(SwitchJs.environments.TEST, 'ACCOUNT_PUBLIC_KEY');

 switchJs.dynamicForms(formContainer, formOptions);

 Parameters

formContainer Object

The object containing the HTML element where the form will be rendered.

formOptions Object

Page 86
[Technical Documentation]

An object containing the initialization options for the Form. Please check below for

further details regarding the available parameters.

name String

The Authorization Group’s name.

permissions JSON Object

The Authorization Group’s permissions.

..dynamicForms(formContainer, formOptions)

These parameters are passed to the .dynamicForms() function call and allow you to
configure the UI/UX of the form.

USAGE EXAMPLE

 let formStyle = {

 formHeader: {'display': 'none'},

 formField: {'margin': '10px 0 10px 0'}

 };

 let formOptions = {

 merchantTransactionId: '123456',

 chargesUrl: 'https://your.url.com/charges/',

 chargeTypes: ['card_onetime', 'multibanco'],

 selectedChargeType: 'card_onetime',

 iframe: true,

 autoRedirect: true,

 showReference: true,

 language: 'en',

 resetStyle: true,

 style: formStyle

 };

Page 87
[Technical Documentation]

 Parameters

autoRedirect Boolean

Whether customers will be automatically redirected to the provider’s payment page,

when a payment method requires redirection. Defaults to true.

chargeld String

ID of a previously created Charge. Useful when a single payment method is supposed to

be displayed, instead of a list of all the available ones. Sending this parameter makes

chargesUrl and merchantTransactionId optional, and not used.

showOptionalFields Boolean

For payment methods that include a reference (information that should be presented

to the customers, for them to proceed with the payment, e.g.: multibanco, boleto, pix, …),

this parameter defines whether the Dynamic Forms should handle the display of it or

not. Defaults to true.

chargeTypes Array

List of charge types that will be available to the customers. By default, all the payment

channels enabled on your Merchant account are available. This list works as a filter over

that, if you want to display only certain payment methods to a given customer.

language String

Language in which the forms should be displayed. Defaults to the browser set language.

merchantTransactionId String

An ID that identifies the transaction on your end. It will be sent in chargeUrl requests. It

is required by default, but optional if chargeId is specified.

payouts Boolean

An ID that identifies the transaction on your end. It will be sent in chargeUrl requests. It

is required by default, but optional if chargeId is specified.

 theme String

Page 88
[Technical Documentation]

Set the theme that will be used. Most customizations should be made using the

customStyles parameter, but the theme can help with some more radical changes to some

parts of the layout. Currently the only available themes are base and material. The one

single difference between them are the form inputs, which have a material-design-like

look and feel on the material theme. Defaults to base.

customStyles Object

This is where you customize the Dynamic Forms to match your website’s style. The

possibilities are endless.

validateFormOnChange Boolean

Whether form data should be validated immediately when input by the user, or only at

the form submission stage. Defaults to true.

selectedChargeType String

Charge type that will be initially selected on forms render. Charge types list screen

will be skipped, and the payment form for this charge type will be immediately

displayed. Other charge types are still available by navigating back to the list.

.on(event, callbackFunction)

Registers a callback function that will be triggered every time a given behavior is
performed by the Dynamic Forms. Using these event listeners you can monitor which
actions are being performed by the forms and trigger any relevant actions on your side.

USAGE EXAMPLE

 dynamicForms.on('charge-type-selected', (chargeType) => {

 if (chargeType === 'card_onetime') {

 console.log(Customer chose Card one-time');

 }

 });

Page 89
[Technical Documentation]

 Parameters

event String

Whether customers will be automatically redirected to the provider’s payment page,

when a payment method requires redirection. Defaults to true.

callbackFunction Function

The callback function that will be executed by the Client Library when the

subscribed event is triggered. Depending on the event in question, it will contain at

most one variable with relevant information.

 Event Example Description

 forms-loaded

The Form has completed rendering on the webpage.

 form-data-changed
The user has changed the data inputted in the Dynamic

Forms.

 form-data-error

There was an error parsing the information submitted in the

Form.

 charge-success

Object with the created Charge ID. Triggered when

Dynamic Forms receive a successful response from

chargesUrl.

Page 90
[Technical Documentation]

 charge-error
Object with the unsuccessful response returned by

chargesUrl.

 charge-types-loaded
The list of available charge types has been rendered in the

UI.

 charge-type-selected Charge type selected by the customer.

 charge-type-canceled

The charge type that was previously selected has been

canceled by the user. Triggered when the user goes back to

charge type selection list.

 instrument-authorized
Instrument details of the successfully created authorized

Instrument.

 instrument-pending

When an Instrument was successfully created, but it’s not

authorized yet, you may need to wait for some action from

the user.

If the instrument has a reference to be displayed, and

showReference is disabled, you should display it to the

customer. If the instrument requires a redirect, and

Page 91
[Technical Documentation]

autoRedirect is disabled, you should redirect the customer

now.

 instrument-invalid
This event is triggered when the instrument fails, either

because the user input data is wrong, or a provider is down.

 submit Triggered every time the user submits the form.

That's it!

By following these steps, your product is already enabled for many Payment Methods and

Providers, and your integration is ready to be tested.

Please contact us if you have any feedback or need more help integrating. We want to make

this integration as simple as possible, and depending on your server-side language or CMS, we

might even be able to provide you with code samples.

Next Steps

You should create your events_url and handle Transaction Lifecycle Events, to mark

transactions as paid in your database.

Page 92
[Technical Documentation]

There are also few additional Transaction Flows you should handle, to truly support every

payment method, provider and flow in the world.

04.2_Hosted Checkout (not allowed for cards payment

method)

Integrating with the Payshop Online Payments Platform

The Hosted Checkout allows you to redirect your customers from your cart to our checkout

when it is time to pay. Hosted Checkout uses Dynamic Forms to make it easier on you to

change around Payment Methods as you see fit as well as streamline your checkout process.

Pay by Link

Transfer the Transaction conundrum to us. Redirect Customers to the

Hosted Checkout and avoid the Payment setup.

PCI Compliance

With Hosted Checkout your Customer’s Payment information never

touches your website, you can share your compliance concerns with us.

Alternative Payment Methods

Let your Customers ditch the cards. Allow your clients to use alternative

forms of Payment in your terminals through QR codes.

Path Method Description

https://checkout.
switchpayments.com

POST Create a hosted checkout page.

HOSTED CHECKOUT EXAMPLE

 {

Page 93
[Technical Documentation]

 "checkoutParams": {

 "currency": "EUR",

 "showReference": false,

 "cancelUrl": "https://checkout-demo.switchpayments.com/cart",

 "chargesUrl": "https://checkout-demo.switchpayments.com/create-charge",

 "redirectUrl": "https://checkout-demo.switchpayments.com/checkout-complete?",

 "chargeTypes": [

 "afterpay",

 "alipay",

 "boleto",

 "card_onetime",

 "giropay",

 "ideal",

 "klarna_invoice",

 "lotericas",

 "multibanco",

 "mbway",

 "neosurf",

 "ninja_wallet",

 "offline_bank_transfer",

 "p24",

 "paypal",

 "paysafecard",

 "sofort",

 "trustly",

 "yandex"

],

 "products": [

 {

 "title": "Sample product 1",

 "reference": "595326123",

 "quantity": 1,

 "price": 14.99,

 "thumbnail": "https://checkout-demo.switchpayments.com/img/sample-desktop.jpg"

 },

 {

 "title": "Sample product",

 "reference": "5955200026",

 "quantity": 1,

 "price": 4.19,

 "thumbnail": "https://checkout-demo.switchpayments.com/img/sample-camera.jpg"

Page 94
[Technical Documentation]

 },

 {

 "title": "Sample product 3",

 "reference": "595326124",

 "quantity": 1,

 "price": 2.5

 },

 {

 "title": "Sample product 4",

 "reference": "595326456",

 "quantity": 1,

 "price": 1.5

 },

 {

 "title": "Sample product 5",

 "reference": "595365930",

 "quantity": 1,

 "price": 10,

 "thumbnail": "https://checkout-demo.switchpayments.com/img/sample-headphones.jpeg"

 }

],

 "totals": {

 "vat": 0,

 "shippingCosts": 5,

 "subtotal": 33.18

 },

 "merchant": {

 "name": "Sample Merchant",

 "logo": "https://switchpayments.com/homepage/imgs/base/switch-logo_normal.png",

 "publicKey": "publicKey",

 "environment": "SANDBOX"

 },

 "amount": 38.18,

 "merchantTransactionId": 25

 }

 }

Enabling Hosted Checkout in your payment operations is a four-step process.

Page 95
[Technical Documentation]

1. Redirect Customer

You must redirect the Customer from your website to Hosted Checkout, you can do this

immediately from the pay option in your cart or generate a URL which can be accessed by the

Customer at a later time.

Your Hosted Checkout Transaction should include the same data as it is required by Dynamic

Forms, this includes parameters such as amount, currency and chargesURL. Additionally it can also

figure customization parameters exclusive to the Hosted Checkout feature, namely

merchant_name and logo. Last but not least, it is relevant to input the order information. This refers

to the selected products, shipping costs, and VAT, for example.

2. Create Charge

When creating a Charge, Merchants are expected to supply their own URL to the Hosted

Checkout. This URL is called when the Customer submits the Payment details and should

return the respective charge_id.

3. Implement Webhook Endpoint

It is essential to implement an endpoint which will receive the Webhooks generated from the

Hosted Checkout procedures. This process is similar to what we implement for Dynamic Forms

or REST Integration.

4. Redirect Customer Back

You should include a redirecting URL that guides the users back to your website once the

Payment procedures have been completed.

Page 96
[Technical Documentation]

04.3_REST Integration (not allowed for cards payment

method)

Integrating with the Payshop Online Payments Platform

In case it is not possible to implement a specific flow using Dynamic Forms, the data collection

can be performed by a merchant customized form and sent to the Payshop Online Payments

platform using the REST Processing API.

This integration should be used for scenarios where Dynamic Forms are not practical. This can

include custom transaction flows, for instance, authentication parameter collection split into

multiple steps and webpages, or host-to-host communication that demands different

compliance dynamics.

For Dynamic Forms you should consider the following order of instructions:

1. Displaying a form

2. Generating a Charge

3. Creating an Instrument

4. Alternative flows: reference and redirection

04.3.1_Display Form

Although this integration pattern does not provide a client-side library to render the UI, it still

allows you to dynamically support new Payment Methods.

In order to do so, our API provides an endpoint that will describe which Payment Methods are

currently active for your account and the corresponding fields that should be captured from

the user (form schema). This information allows you to construct the UI in a dynamic manner,

ensuring it can accommodate future changes and allowing you to truly leverage our

Dashboard management capabilities to activate Payment Channels at will.

Page 97
[Technical Documentation]

Path Method Description

https://api-test.
switchpayments.com/v2/
charges/types

GET Lists the Charge types currently active for this
account.

REQUEST EXAMPLE

 $ curl https://api.switchpayments.com/v2/charges/types

 -u publicKey

RESPONSE EXAMPLE

 [
 "...",

 {

 "id": "card",

 "title": "Credit/Debit Card",

 "schema": {

 "required": ["name", "number", "expiration_month", "expiration_year", "cvv"],

 "properties": {

 "name": {

 "title": "Cardholder Name",

 "type": "string",

 "minLength": "3",

 "maxLength": "255"

 },

 "expiration_month": {

 "title": "Expiration Month",

 "type": "integer",

 "minimum": "1",

 "maximum":"12"

 }

 }, "..."

 },

 "ui_schema": {

 "name": {"ui:placeholder": "Full Name"},

 "number": {"ui:placeholder": "1111 2222 3333 4444"},

Page 98
[Technical Documentation]

 "cvc": {

 "ui:placeholder": "123",

 "ui:help": "Last 3 digits on the back of the card"

 }, "..."

 }

 },

 "..."

]

The payload returned by this endpoint can be leveraged by your client-side library to construct

the UI with the active Payment Methods, gather the required data from the user, and validate

it accordingly. This will grant a higher deal of flexibility to your front-end implementation,

allowing you to seamlessly support future changes.

04.3.2_Generating a Charge

As stated in the Core Concepts section, our platform divides a Transaction into three

executable Elements: Charge, Instrument, and Payment. The API allows you to coordinate the

creation of these Elements, where required, through multiple available endpoints.

In order to generate a Charge, the following endpoint should be called by your backend platform

using your Private API Key.

Path Method Description

https://api-test.
switchpayments.com/v2/charges

POST Creates a new Charge for a given transaction.

REQUEST EXAMPLE

 -u accountId:privateKey

 -d '{

 "charge_type": "card_onetime",

 "amount": 42,

 "currency": "EUR",

 "events_url": "https://your.url/v1/notificationHandler"

Page 99
[Technical Documentation]

 }'

Request Body Parameter

charge_type String Required

Indicates the Payment Method that has been selected by the Customer, should contain

the value passed by our API call.

currency String Required

ISO 4217 code that indicates the currency that will be used by the Transaction.

amount Number Required

The amount that should be charged to the Customer.

events_url String

Allows you to configure the URL that will be called by the Payshop Online Payments

platform to notify about Lifecycle Events related to this Transaction. Please note that

the URL must use HTTPS.

redirect_url String

Specifies the HTTPS URL to where the users should be sent after they authenticated the

Transaction on the Payment Method page.This parameter is only required for Payment

Methods that require user redirection for authentication (e.g. PayPal).

instrument_params JSON Object

Specifies configuration parameters that are passed to the Provider when creating the

Instrument element and which allow you to configure how the fund transfer is

executed.

metadata JSON Object

This object allows you to pass any Transaction related data points that may be useful to

be displayed in the Dashboard for analysis purposes.

channels Array

Page 100
[Technical Documentation]

Gives the ability to specify which Channel should be used to process the transaction.

Using this parameter you can leverage your business logic to select the Channel rather

than relying on Dynamic Routing. If multiple values are present, a fallback mechanism

will be used, giving precedence to the first entries

RESPONSE EXAMPLE

 {
 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "charge_type": "card_onetime",

 "amount": 10,

 "currency": "EUR",

 "confirmed": false,

 "external": false,

 "instrument_params": {

 "enable3ds": true

 },

 "events_url": "https://merchant.com/events",

 "channels": [{

 "processor": "checkout",

 "id": "85a557e4fdb6c8806f413bc75fabab162828e4f95b8e6390",

 "label": "card_onetime_checkout"

 },

 {

 "processor": "acapture",

 "id": "9fb7b1e253f1c592210b7c37b40b18e576ff30995b8e40de",

 "label": "card_onetime_acapture"

 }],

 "charge_type_label": "Card One-Time",

 "redirect_url": "https://merchant.com/redirect",

 "metadata": {

 "orderId": "1337"

 },

 "external_ids": null,

 "request_log": {

 "country": "PT",

 "ip_address": "100.10.10.10",

 "user_agent": "curl/7.54.0",

Page 101
[Technical Documentation]

 "library_version": null

 },

 "created_at": "2018-06-18T10:28:36.358233+00:00",

 "updated_at": "2018-06-18T10:28:36.358258+00:00"

 }

Response Body Parameter

id String

The id that uniquely identifies the created Charge element for this Transaction.

charge_type String

Indicates the Payment Method that will be used to process the Transaction.

charge_type_lavel String

User-friendly description of the Payment Method that will be used to process the

Transaction.

currency String

ISO 4217 code that indicates the currency that will be used by the Transaction.

confirmed Boolean

Indicates whether the current Charge element has been confirmed by the Merchant

using their private key.

external Boolean

Indicates whether the current Charge element was not created by the Payshop Online

Payments Platform.

instrument_params JSON Object

The configuration parameters that were specified when creating the Charge element,

which allow you to configure how the funds transfer is executed by the Provider.

Page 102
[Technical Documentation]

events_url String

Contains the URL that will be called by the Payshop Online Payments Platform to notify

about Lifecycle Events related to this transaction.

redirect_url JSON Object

The URL to where the users should be sent after they authenticated the transaction on

the Payment Method page.

channels Array

Documents the Channels that will be used to process the Transaction.

metadata JSON Object

The Transaction-related data points that were passed when creating the Charge, which

may be useful to be displayed in the Dashboard for analysis purposes.

external_ids JSON Object

Documents the Provider id for the current Charge, if available.

request_log JSON Object

Stores information about the device that was used to create the current Charge

element, such as country, ip_address, user_agent, and library_version.

created_at String

Indicates the date and time when the current Charge element was created.

Updated_at JSON Object

Documents the date and time when the last update was performed to the current

Charge.

Page 103
[Technical Documentation]

04.3.3_Create Instrument

At this stage in the payment processing process, we need to collect the required information

from the user to execute the payment. This will be executed by your checkout page, leveraging

your frontend framework, which should collect the parameters required depending on the

Payment Method selected by the customer.

Once this is completed, your UI component should create the Instrument element using the

following endpoint.

Path Method Description

https://api.switchpayments.com/v2/instr
uments

POST Creates a new Instrument for a given transaction.

REQUEST EXAMPLE

 $ curl -vX POST https://api.switchpayments.com/v2/instruments

 -u publickey:

 -d '{

 "charge": "35ed95bfb772b94c4e59f91fcbef0f5618d46e3d5b2b7da5",

 "name": "John doe",

 "number": "4111111111111111",

 "expiration_month": 12,

 "expiration_year": 2018,

 "cvc": "007"

 }'

 Request Body Parameter

charge String Required

The unique identifier for the Charge element that was previously created for this

Transaction.

currency String Required

Page 104
[Technical Documentation]

The remaining fields are dependent on the Payment Method that was previously

selected. Below you can find an example for card_onetime.

name String

The name of the Cardholder, as printed on the card.

number Integer

The number of the card that will be used to process the Payment. It should contain 14

to 19 digits, without any separators.

expiration _month Integer

Zero padded, two-digit representation of the expiration month for the card.

expiration_year Integer

Zero padded, two-digit representation of the expiration year for the card.

cvc String

The card verification code should contain 3 to 4 digits according to the card brand.

RESPONSE EXAMPLE

 {
 "id": "0d0e51462ef62787dcb711f3c7ec42d086a172f85b2b8ddc",

 "status": "pending",

 "customer": null,

 "used": false,

 "last_payment": null,

 "redirect": {

 "url":

"https://api.switchpayments.com/v2/instruments/0d0e51462ef62787dcb711f3c7ec42d086a172f85b2b8ddc/redir

ect",

 "method": "GET",

 "parameters": null

 },

 "reference": null,

 "response": {

 "eci_code": "05"

Page 105
[Technical Documentation]

 },

 "params": {

 "bin": "411111",

 "name": "John doe",

 "expiration_year": 2018,

 "brand": "VISA",

 "expiration_month": 12,

 "fingerprint":

"a1ccb846ceda84e80b91bee9025437b73784de262233a1bde39490bcb597fb69ef51d9dd3f67a2cb4ee85fb674104

60f138f9bb1ee5d7de2f27291e7e895f7a8",

 "enable3ds": true,

 "last_4_digits": "1111"

 },

 "external": false,

 "success": true,

 "failure_description": null,

 "channel": {

 "processor": "checkout",

 "id": "85a557e4fdb6c8806f413bc75fabab162828e4f95b8e6390",

 "label": "card_onetime_checkout"

 },

 "charge": {

 "charge_type": "card_onetime",

 "currency": "EUR",

 "created_at": "2018-06-21T10:27:49.241769+00:00",

 "charge_type_label": "Card One-Time",

 "amount": 10,

 "id": "35ed95bfb772b94c4e59f91fcbef0f5618d46e3d5b2b7da5"

 },

 "external_ids": {

 "processor": "8a8294496421b8d30164222227f17687"

 },

 "request_log": {

 "country": null,

 "ip_address": "100.10.10.10",

 "user_agent": "curl/7.54.0",

 "library_version": null

 },

 "created_at": "2018-06-21T11:37:01.694149+00:00",

 "updated_at": "2018-06-21T11:37:01.694168+00:00"

 }

Page 106
[Technical Documentation]

Response Body Parameter

id String

The id that uniquely identifies the created Instrument element for this transaction.

fingerprint String

A unique, one-way hash fingerprint of the current this Instrument, which can be

leveraged for Risk prevention purposes.

success Boolean

This boolean flag indicates if the current Instrument has been successfully executed.

true: the Instrument has been successfully executed. false: the Instrument has failed to

be executed.

 status String

 Documents the execution status for the Instrument. authorized: the Instrument was

successfully authorized by the Provider. invalid: the Instrument was considered invalid by

the Payshop Online Payments Platform or the Provider. pending: used for asynchronous

Payment Methods, indicates that the Customer is yet to provide additional information

to proceed forward.

response JSON Object

Contains the technical information returned by the Provider when processing the

current Instrument, such as the card ECI code.

failure_description String

Used for scenarios where the Instrument fails to be created, this parameter will contain

a textual description of the error.

used Boolean

Indicates if the current Instrument has been previously used. true: the Instrument has

been used to perform a previous transaction. false: the Instrument is yet to be used to

perform a transaction.

redirect String

Page 107
[Technical Documentation]

Used for Payment Methods that require redirection, documents the information

required to direct the user to the page where he will complete the Transaction: url,

method, params.

reference JSON Object

Only applicable to Payment Methods that require the Customer to complete the

Transaction asynchronously outside of the Payshop Online Payments platform.

Documents the information required by the Customer to be able to do so, the specific

schema of this object will be dependent on the Payment Method.

external Boolean

Indicates whether the current Instrument element was not created by the Payshop

Online Payments platform. true: the Instrument has not been processed by the platform.

false: the Instrument has been created using the platform.

channels JSON Object

Documents the Channel that was used to process the Instrument.

charge JSON Object

Basic Charge information,

external_ids JSON Object

Documents the Provider id for the current Instrument, if available.

request_log String

Stores information about the device that was used to create the current Instrument

element, such as: country, ip_address, user_agent, and library_version.

created_at_at String

Indicates the date and time when the current Instrument element was created.

created_at_at String

updated_at String

Page 108
[Technical Documentation]

Documents the date and time when the last update was performed to the current

Charge.

04.3.4_Alternative Flows

Reference

For payment methods that require the customer to push funds using an account reference

(e.g. Multibanco, by going to an ATM), the reference fields should be displayed to the customer.

Redirection

For payment methods that require redirecting the user to a provider page (e.g. Paypal), after

creating the instrument, the app should redirect the user to

'https://api.switchpayments.com/v2/instruments/' + instrument.id + '/redirect'. After that, the user will be

redirected to the redirectUrl defined in the charge.

That's it!
By following these steps, your product is already enabled for many payment methods and

providers, and your integration is ready to be tested.

Next Steps

You should create your events_url and handle Transaction Events, to mark transactions as paid

in your database.

There are also a few more Transaction Flows you should handle, to truly support every payment

method, provider, and flow in the world.

Page 109
[Technical Documentation]

04.4_Transaction Flows

Integrating with the Payshop Online Payments Platform

Supporting different Payment Methods under the same platform in a standardized manner

brings additional challenges when it comes to transaction execution. Each Payment Method

is designed with its own philosophy when it comes to processing transactions, and therefore

requires different steps, and different execution flows.

Accommodating this diversity under the same platform required us to support four

transaction flows: Capture on Creation, Auth-Capture, Recurring on Auth, and Recurring on

Capture.

Transaction Flow Payment executed
automatically?

Recurring Payments

1. Capture on Creation

Yes

No

2. Auth-Capture

No

No

3. Recurring on Auth

No

No

4. Recurring on Capture

No

Yes

Capture on Creation

This flow targets transactions that only need
to take place once, and where the funds do
not need to be captured at a later time,

Auth-Capture

An Auth-Capture flow is intended for
transactions that take place once, and have
the funds captured at a later time, thus

Page 110
[Technical Documentation]

therefore not requiring an authorization to
take place.

From a platform perspective, this flow does
not require you to create the Payment
element to execute the funds’ transfer. The
Processing Application will automatically
create the Payment element once you create
the Instrument, given that the funds will be
captured right away.

requiring two steps: authorization and funds
capture.

The authorization is executed when the
Instrument element is created in our
platform, either automatically using our
Dynamic Forms or manually leveraging our
REST API. At this stage, the money has been
reserved from the customer accounting
platform but has not yet been transferred.
The actual funds’ transfer only happens
when the Payment element is created in the
platform.

Recurring on Auth

Destined for payments that need to happen
on a frequent basis, this flow allows you to
create a reusable Instrument element that
can be leveraged to make multiple
Payments.

This particular recurring flow automatically
executes the Payment element when the
Instrument is created. It means that for the
first payment, you only need to create the
Instrument, as the platform will
automatically create the first Payment. For
subsequent transactions you only need to
create the Payment element, referencing the
same specific Instrument.

Recurring on Capture

Designed for transactions that need to take
place regularly, enables you to create a
reusable Instrument element that can be
used to perform multiple Payments.
This particular recurring flow does not
automatically execute the Payment element
when the Instrument is created. In short, it
requires you to create a Payment element
every time you want to execute a transaction.

Instrument flows

Depending on the payment method, after creating an Instrument on the client-side, one of

three things might happen:

1. If the payment is synchronous, the flow will end on success, and the customer can be

shown the success screen (e.g. Credit Card).

2. If the payment requires the customer to push funds using an account reference this

reference should be displayed to the customer or the dynamic forms can show it for

you (e.g. Multibanco, by going to an ATM).

Page 111
[Technical Documentation]

3. If the payment requires redirection, the Dynamic Forms will redirect the customer to

the payment provider page for authentication. Afterward, it will redirect back to your

server's redirectUrl with an Instrument id parameter with which you can confirm the

Instrument status (e.g. Paypal),.

To support redirection, you should add a redirectUrl on the charge creation. For convenience,

you simply can add it for all transactions, even if it is not necessary.

REQUEST

$ curl -vX POST https://api.switchpayments.com/v2/charges

 -u accountId:privateKey

 -d '{

 "charge_type": "card_onetime",

 "amount":42,

 "currency":"EUR",

 "redirectUrl":"https://www.merchant.com/redirectUrl"

 }'

04.4.1_Capturing funds at a later time

Depending on the Payment Method, there are specific server-side operations that can be

enabled after redirecting.

1. If the Instrument is not captured on creation, it means that the funds have been

authorized/reserved and can be captured/transferred in a future time.

2. If the Instrument is recurring, it means that the Customer has authorized multiple

Payments to be created.

In both these cases, the instrument id should be saved on your database during the

instrument.authorized Event and used to create a Payment at any time, by calling the Payments

endpoint using the Instrument.

REQUEST

$ curl -vX POST https://api.switchpayments.com/v2/payments

Page 112
[Technical Documentation]

 -u accountId:privateKey

 -d '{

 "instrument": "4145f3be2094da8b786fe9ab5c6ed206d7c2e",

 "amount":42,

 "currency":"EUR"

 }

Result Parameters

id String

Payment id, to be used for refunds.

success String

Payment success status.

refundable Boolean

Whether refunds can be created for this payment

RESULT HTTP 201

{

 "id": "206d7c2e4145f3be2b786fe9ab5c6ed094da8",

 "success": true,

 "refundable": true

}

Page 113
[Technical Documentation]

04.4.2_Refunding Transactions

If a payment is refundable, you can call its refund method with the private keys.

REQUEST

$ curl -vX POST https://api.switchpayments.com/v2/payments/{id}/refund

 -u accountId:privateKey

 -d '{

 "amount":42,

 "currency":"EUR",

 }

RESULT HTTP 201

{

 "success": true

}

Result Parameter

success Boolean

Boolean that marks whether transactions are successful or unsuccessful.

04.5_Event Handling

Integrating with the Payshop Online Payments Platform

Page 114
[Technical Documentation]

Search: Trouble finding a payment? Need to dive deeper into a specific transaction?

Customized searches for one or multiple Elements take into account specified criteria,

allowing you to consult technical details;

Events: When analyzing your payment operation, every moment counts. Each of the previously

mentioned Elements come with their event sets. This means, for instance, you can decompose

the various events related to a transaction. Consulting the moment when it became

successful, it failed or it was settled.

04.5.1_Receive Events

To start receiving events on your server, add an HTTPS events_url during the Charge creation.

Path Method Description

https://api.switchpayments.com/v2/char
ges

POST Add events_url to Charge creation.

ADD EVENTS URL

$ curl -vX POST https://api.switchpayments.com/v2/charges

 -u accountId:privateKey

 -d '{

 "charge_type": "card_onetime",

 "amount": 42,

 "currency": "EUR",

 "events_url": "https://merchant.com/events"

 }

Parameter Description

event String

Lifecycle Event id.

Page 115
[Technical Documentation]

event_type String

Lifecycle Event type.

As a Transaction progresses its lifecycle, the Payshop Online Payments platform will send an

HTTPS POST request to your events_url with two parameters. The most important Event Type to

listen to is the instrument.authorized Event, which happens when the Customer Payment data has

been confirmed.

04.5.2_Event Details

GET /v2/events/{id}

To get the event details, use the event parameter as the {id} in the following request

REQUEST

$ curl https://api.switchpayments.com/v2/events/{id}

 -u accountId:privateKey

Result Parameter

id String

Unique event identifier

created_at String

The date when the event was created

object_id String

The unique identifier of the event related object (e.g. refund_id)

Page 116
[Technical Documentation]

result_status Integer

HTTP status of the event

retries_log Array

A list with all the retries

type String

The event type (e.g. charge.created, instrument.created)

type_label String

Pretty name for the event type

charge JSON Object

The charge object (see Charges)

instrument JSON Object

The instrument object (see Instruments)

payment JSON Object

The payment object (see Payments)

refund JSON Object

The refund object (see Refunds)

dismissed_at String

The date when the event was marked as dismissed

settlement JSON Object

Page 117
[Technical Documentation]

The settlement object

RESPONSE HTTP 200

HTTP 200

{

 "id":"f3be209e9ab06d7c2e4145f3be209e9fggab5c",

 "type": "instrument.authorized",

 "charge": {

 "id": "06d7c2e4145f3be209e9ab5c6ed24da8b786f",

 "type": "card",

 "amount": 42,

 "currency": "EUR",

 "metadata": {"orderId":"1337"}

 },

 "instrument": {

 "id": "4145f3be2094da8b786fe9ab5c6ed206d7c2e",

 "failure_description": null,

 "recurring": false,

 "captured_on_creation": true

 }

}

Events have many parameters, corresponding to every detail available on the Transaction at

that moment. In the previous example you can find some of the most important ones. On an

instrument.authorized Event, the transaction corresponding to the charge.metadata can be marked

as successfully completed in the database.

04.5.3_Event Types and Parameters

It's possible to configure independent webhooks to handle each event type or to handle all of

them in the same endpoint. The different lifecycle events that are communicated to the

merchant server and can be browsed on the dashboard or through the Lifecycle API.

Page 118
[Technical Documentation]

 Event Description

 Charge created

Charge was initiated by the merchant or customer

 Charge confirmed Charge was confirmed by the merchant

 Instrument authorized An Instrument is ready to be used to create a Payment

 Instrument pending Instrument is awaiting customer input

 Instrument invalid
Instrument was not authorized or was invalidated by the

merchant

 Instrument risk Instrument was tagged by the Risk Management

Page 119
[Technical Documentation]

 Instrument settled Instrument has been settled by the payment provider

 Payment error Payment attempt was unsuccessful

 Payment pending Payment is pending approval by the payment provider

 Payment success Payment was successfully created

 Payment risk Payment was tagged by the Risk Management

 Payment settled Payment has been settled by the payment provider

Page 120
[Technical Documentation]

 Refund error Refund attempt was unsuccessful

 Refund pending Refund is pending approval by the payment provider

 Refund success Refund was successfully created

 Refund settled Refund has been settled by the payment provider

 Reversal success Authorization was successfully voided

 Reversal pending
Authorization reversal is pending approval by the payment

provider

Page 121
[Technical Documentation]

 Reversal error Authorization was not possible to reverse

 Dispute created Payment was disputed by the Customer

 Dispute settled Dispute has been settled by the payment provider

EVENT PARAMETER EXAMPLE

 {

 "id":"f3be209e9ab06d7c2e4145f3be209e9fggab5c",

 "type": "instrument.authorized",

 "charge": {

 "id": "06d7c2e4145f3be209e9ab5c6ed24da8b786f",

 "type": "card",

 "amount": 42,

 "currency": "EUR",

 "metadata": {"orderId":"1337"}

 },

 "instrument": {

 "id": "4145f3be2094da8b786fe9ab5c6ed206d7c2e",

 "failure_description": null,

 "recurring": false,

 "captured_on_creation": true

 }

 }

Page 122
[Technical Documentation]

Availability Result Parameter Description

 event.id Lifecycle Event id.

 event.type Lifecycle Event type.

 charge.id Charge id.

Result Parameters

Available on All Events

charge_type

Payment method
chosen by the Customer.

 charge.amount Charged amount.

 charge.currency Processing currency.

charge.metadata

Parameter sent during the creation
of the charge, that identifies the
Transaction in your system, allowing
you to mark it as successfully
completed in your database.

instrument.id

This is the id of the transaction
authorization provided by your
customer. It acts as a token in
recurring Payments.

 instrument.failure_d
escription

If the instrument failed, this field
contains the description of the error.

Result Parameters available
on Instrument and Payment
Events

instrument.request_l
og

Payment method chosen by the
Customer.

 Instrument.
recurring

Whether the Instrument allows
multiple Payments to be created
from this Customer authorization.

 nstrument.captured
_on_creation

Whether a Payment has been
created automatically or if it needs to
be captured in a separate operation..

Result Parameters available
on Payment Events

payment.id Payment id used to create Refunds.

Charges

POST /v1/sources/charges

To get the event details, use the event parameter as the {id} in the following request

Page 123
[Technical Documentation]

Path Method Description

Sandbox
https://merchant-
api.switchpayments.com/v1/sources/cha
rges

Production
https://merchant-
api.switchpayments.com/v1/sources/cha
rges

POST Add charge elements using External Sources.

REQUEST

 $ curl -vX POST https://merchant-

api.switchpayments.com/v1/sources/charges?merchant_id=merchantID -u accountId:APIKey -d '{

 "charge_type": "card_onetime",

 "amount": 42,

 "currency": "EUR",

 "created_at": "2018-10-16T15:15:34.694149+00:00",

 "operation": {"metadata": {"transaction_id": "123123123"}},

 "channels": ["card_onetime_checkout”],

 "metadata": {"orderId": "1337"},

 "events_url": "https://merchant.com/events",

 "redirect_url": "https://merchant.com/redirect",

 "instrument_params": {"descriptor": "D891220"},

 "request_log: {"country": null, "ip_address": "100.10.10.10", "user_agent": "curl/7.54.0",

"library_version": null}

 }'

Request Parameter

charge_type String Required

Payment method selected by the customer.

amount Float Required

Transaction amount.

currency String Required

Page 124
[Technical Documentation]

Transaction currency.

created_at String Required

The date when the charge was created (ISO 8601).

operation JSON Object Required

Include metadata keyword (it must be a JSON object) with some external operation metadata

from the provider.

channels Array

Indicates which channels you want to use for the transaction.

metadata JSON Object

Any metadata that uniquely identifies this transaction in your system. This field will be used to

identify this transaction when handling events, searching for transactions on the dashboard,

dynamically routing transactions or managing risk.

events_url String

HTTPS merchant server-side webhook where events will be handled.

redirect_url String

HTTPS URL (or URL schemas for mobile apps) to send users back to, for payment methods that

require customer redirection (e.g. Paypal, credit cards with 3D-secure).

instrument_params JSON Object

The merchant can pass parameters which will be used when creating the instrument.

request_log JSON Object

Page 125
[Technical Documentation]

Contains information on the origin of the request: country, ip_address, user_agent and the

library_version. Defaults to the one who made the request.

RESULT: HTTP 201

 {

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "amount": 42,

 "currency": "EUR",

 "charge_type": "card_onetime",

 "charge_type_label": "Card One-Time",

 "confirmed": true,

 "created_at": "2018-10-16T15:15:34.694149+00:00",

 "updated_at": "2018-10-16T15:15:34.694149+00:00",

 "external": true,

 "metadata": {

 "orderId": "1337"

 },

 "events_url": "https://merchant.com/events",

 "redirect_url": "https://merchant.com/redirect",

 "instrument_params": {

 "descriptor": "D891220"

 },

 "external_ids": null,

 "request_log": {

 "country": null,

 "ip_address": "100.10.10.10",

 "user_agent": "curl/7.54.0",

 "library_version": null

 },

 "channels": [{

 "processor": "checkout",

 "id": "85a557e4fdb6c8806f413bc75fabab162828e4f95b8e6390",

 "label": "card_onetime_checkout"

 }]

 }

Result Parameter

id String

Page 126
[Technical Documentation]

The charge ID that can be used once to create an instrument.

amount Float

Maximum amount set for the charge.

currency String

The currency of the charge.

charge_type String

Identifier of the charge type.

charge_type_label String

The designation attributed to the charge.

confirmed Boolean

Indicates if the created charge was confirmed by the merchant using their private key.

created_at String

The date when the charge was created.

updated_at String

The date when the charge was last updated.

external Boolean

Indicates if the charge was created as an external source.

metadata JSON Object

Provided charge metadata.

Page 127
[Technical Documentation]

external_ids JSON Object

Provider IDs of the charge.

redirect_url String

Redirect url defined.

instrument_params JSON Object

The instrument parameters used to create the charge.

request_log JSON Object

Contains information on the origin of the request: country, ip_address, user_agent and the

library_version.

channels Array

Channels to be used in the transaction.

Check out the following use case

It is not possible to create a charge without registering all the required fields. Tending to this

error case, a list with all the invalid fields and the respective errors is returned.

REQUEST

 $ curl -vX POST https://merchant-

api.switchpayments.com/v1/sources/charges?merchant_id=merchantID -u accountId:APIKey -d '{

 "charge_type": "card_onetime",

 "amount": 42,

 "created_at": "2018-10-16T15:15:34.694149+00:00"

 }'

Result Parameter

message String

Page 128
[Technical Documentation]

String with the error details, in this case: "Invalid parameters"

parameters JSON Object

A list with all the invalid fields and the respective errors

RESULT: HTTP 400

 {

 "message": "Invalid parameters",

 "parameters": {

 "currency": [

 "This field is required."

]

 }

 }

Instruments

POST /v1/sources/instrument

Path Method Description

Sandbox
https://merchant-
api.switchpayments.com/v1/sources/inst
ruments

Production
https://merchant-
api.switchpayments.com/v1/sources/inst
ruments

POST Add instrument elements using External Sources.

REQUEST

 $ curl -vX POST https://merchant-

api.switchpayments.com/v1/sources/instruments?merchant_id=merchantID -u accountId:APIKey -d '{

 "charge": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "created_at": "2018-10-16T15:15:34.694149+00:00",

 "operation": {"metadata": {"transaction_id":

"918dd9382a17be5d060f9a8dd15674b047b7f5d15b3e2f27"}},

Page 129
[Technical Documentation]

 "request_log": {"country": null, "ip_address": "100.10.10.10", "user_agent": "curl/7.54.0",

"library_version": null}

 }'

Request Parameter

charge String Required

The identifier of the charge that was previously created.

created_at String Required

The date when the charge was created (ISO 8601).

operation JSON Object Required

Any operation metadata required to handle the transaction on the processor side.

params JSON Object

The sanitized instrument parameters.

request_log JSON Object

Contains information on the origin of the request: country, ip_address, user_agent and the

library_version. Defaults to the one who made the request.

RESULT: HTTP 200

 {

 "id": "0d0e51462ef62787dcb711f3c7ec42d086a172f85b2b8ddc",

 "status": "pending",

 "success": true,

 "used": false,

 "external": true,

 "charge": {

 "charge_type": "card_onetime",

Page 130
[Technical Documentation]

 "currency": "EUR",

 "created_at": "2018-06-18T10:28:36.358233+00:00",

 "charge_type_label": "Card One-Time",

 "amount": 10,

 "id": "35ed95bfb772b94c4e59f91fcbef0f5618d46e3d5b2b7da5"

 },

 "last_payment": null,

 "created_at": "2018-10-16T15:15:34.694149+00:00",

 "updated_at": "2018-06-21T11:37:01.694168+00:00",

 "request_log": {

 "country": null,

 "ip_address": "100.10.10.10",

 "user_agent": "curl/7.54.0",

 "library_version": null

 },

 "external_ids": {

 "processor": "8a8294496421b8d30164222227f17687",

 "transaction_id": "918dd9382a17be5d060f9a8dd15674b047b7f5d15b3e2f27"

 },

 "redirect": {

 "url": "https://test.ppipe.net/connectors/demo/simulator.link",

 "method": null,

 "parameters": [

 {

 "name": "MD",

 "value": "8a8294496421b8d301642222287d768e"

 },

 {

 "name": "PaReq",

 "value":

"IT8ubu+5z4YupUCOEHKsbiPep8UzIAcPKJEjpwGlzD8#KioqKioqKioqKioqMTExMSMxMC4wMCBFVVIj"

 },

 {

 "name": "TermUrl",

 "value":

"https://test.ppipe.net/connectors/asyncresponse_simulator;jsessionid=9DBF6D37DA9B12E4B23A70F24

52A8021.sbg-vm-

con02?asyncsource=THREEDSECURE&ndcid=8a82941751c365120151c4a473fa04bf_830642b94a9040a3

a08463b9414f0396"

 },

 {

 "name": "connector",

 "value": "THREEDSECURE"

 }

Page 131
[Technical Documentation]

]

 },

 "params": {

 "descriptor": "D891220"

 },

 "channel": {

 "processor": "checkout",

 "id": "85a557e4fdb6c8806f413bc75fabab162828e4f95b8e6390",

 "label": "card_onetime_checkout"

 },

 "failure_description": null

 }

Result Parameter

id String

The instrument ID that can be used to create a payment.

status String
Current status of the instrument. It could be pending, invalid or authorized.

success Boolean

Flag indicating whether the instrument was successfully created.

used Boolean

Flag indicating whether the instrument has already been used.

external Boolean

Indicates if the created charge was created as an external source.

charge JSON Object

Details about the charge.

last_payment JSON Object

A reference for the last payment of the instrument. If it exists, the object has the following keys:

id (string) and success (boolean).

created_at String

Page 132
[Technical Documentation]

The date when the instrument was created.

updated_at String

The date when the instrument was last updated.

request_log JSON Object

Contains information on the origin of the request: country, ip_address, user_agent and the

library_version.

external_ids JSON Object

Useful external ids (e.g. IDs from the processing channel).

redirect JSON Object

Contains information from the provider on how to redirect the merchant.

params JSON Object

Includes the instrument parameters concatenated with the instrument_params from the

corresponding charge.

channel JSON Object

Channel used to create the instrument.

failure_description String

If the instrument was not successful there may be details in this field about the reasons for the

error (e.g. from the processor).

Payments

POST /v1/sources/payments

Path Method Description

Sandbox
https://merchant-
api.switchpayments.com/v1/sources/pay
ments

Production

POST Add payment elements using External Sources.

Page 133
[Technical Documentation]

https://merchant-
api.switchpayments.com/v1/sources/pay
ments

Request Parameter

instrument String Required

The identifier of the instrument that was previously created.

amount Float Required

Transaction amount.

currency String Required

Transaction currency.

created_at String Required

The date when the charge was created (ISO 8601).

operation JSON Object Required

Any operation metadata required to handle the transaction on the processor side.

description String

Transaction description.

metadata JSON Object

Any metadata that uniquely identifies this transaction in your system. This field will be used to

identify this transaction when handling events, searching for transactions on the dashboard,

dynamically routing transactions or managing risk.

params JSON Object

The sanitized payment parameters.

request_log JSON Object

Contains information on the origin of the request: country, ip_address, user_agent and the

library_version. Defaults to the one who made the request.

Page 134
[Technical Documentation]

REQUEST

 $ curl -vX POST https://merchant-

api.switchpayments.com/v1/sources/payments?merchant_id=merchantID -u accountId:APIKey -d '{

 "instrument": "0d0e51462ef62787dcb711f3c7ec42d086a172f85b2b8ddc",

 "amount": 10,

 "currency": "EUR",

 "created_at": "2018-10-16T15:15:34.694149+00:00",

 "operation": {"metadata": {"transaction_id":

"918dd9382a17be5d060f9a8dd15674b047b7f5d15b3e2f27"}},

 "description": "Payment description",

 "metadata": {"orderId": "123"},

 "request_log": {"country": null, "ip_address": "127.0.0.1", "user_agent": "curl/7.54.0",

"library_version": null}

 }'

Result Parameter

id String

Unique identifier for the payment.

amount Float

The payment amount.

currency String

The currency of the payment.

description String

Transaction description.

created_at String

The date when the payment was created.

Page 135
[Technical Documentation]

updated_at String

Last date when the payment was last updated.

external_ids JSON Object

Useful external ids (e.g. IDs from the processing channel).

success Boolean

Flag indicating whether the payment was successfully created.

external Boolean

Indicates if the created charge was created as an external source.

charge JSON Object

Contains a trimmed object of the related charge: id, charge_type, charge_type_label,

metadata.

instrument JSON Object

Contains a trimmed object of the related instrument: id, channel.

refunds Array

A list that contains all the refunds objects related to the payment.

request_log JSON Object

Contains information on the origin of the request: country, ip_address, user_agent and the

library_version.

params JSON Object

The payment parameters.

Page 136
[Technical Documentation]

refundable Boolean

Defines whether or not the payment allows for refunds.

metadata JSON Object

Any metadata that uniquely identifies this transaction in your system. This field will be used to

identify this transaction when handling events, searching for transactions on the dashboard,

dynamically routing transactions or managing risk.

failure_description String

If the payment is not successful, this field has details about the failure.

RESULT

 {

 "id": "ed9fdf723c40fada03b6ce783beb182376a85c735b3e2f27",

 "amount": 42,

 "currency": "EUR",

 "description": "Payment description",

 "created_at": "2018-10-16T15:15:34.694149+00:00",

 "updated_at": "2018-10-16T15:15:34.694149+00:00",

 "external_ids": {

 "transaction_id_trunc": "918dd9382a17be5d060f9a8dd15674",

 "processor": "8a8294496421b8d30164222227f17687",

 "transaction_id": "918dd9382a17be5d060f9a8dd15674b047b7f5d15b3e2f27"

 },

 "success": true,

 "external": true,

 "charge": {

 "charge_type": "card_onetime",

 "charge_type_label": "Card One-Time",

 "id": "756ae7bdc3390050cf6648fb819ac1c4de02f4d15b278954",

 "metadata": {

 "orderId": "837232"

 }

 },

 "instrument": {

 "id": "0d0e51462ef62787dcb711f3c7ec42d086a172f85b2b8ddc",

 "channel": {

 "processor": "checkout",

Page 137
[Technical Documentation]

 "id": "85a557e4fdb6c8806f413bc75fabab162828e4f95b8e6390",

 "label": "card_onetime_checkout"

 }

 },

 "refunds": [],

 "request_log": {

 "country": null,

 "ip_address": "127.0.0.1",

 "user_agent": "curl/7.54.0",

 "library_version": null

 },

 "params": null,

 "refundable": false,

 "metadata": {"orderId": "123"},

 "failure_description": null

 }

Refunds

POST /v1/sources/refunds

Path Method Description

Sandbox
https://merchant-
api.switchpayments.com/v1/sources/refu
nds

Production
https://merchant-
api.switchpayments.com/v1/sources/refu
nds

POST Add refunds elements using External Sources.

REQUEST

 $ curl -vX POST https://merchant-

api.switchpayments.com/v1/sources/refunds?merchant_id=merchantID -u accountId:APIKey -d '{

 "payment": "ed9fdf723c40fada03b6ce783beb182376a85c735b3e2f27",

 "amount": 10,

 "created_at": "2018-10-16T15:15:34.694149+00:00",

 "operation": {"metadata": {"transaction_id":

"918dd9382a17be5d060f9a8dd15674b047b7f5d15b3e2f27"}},

Page 138
[Technical Documentation]

 "description": "Unapplied coupon",

 "request_log": {"country": null, "ip_address": "127.0.0.1", "user_agent": "curl/7.54.0",

"library_version": null}

 }'

Request Parameter

payment String Required

The identifier of the payment that was previously created.

amount Float Required

The amount to be refunded. It can be partial and it also cannot exceed the total amount of the

payment.

created_at String Required

The date when the charge was created (ISO 8601).

operation JSON Object Required

Any operation metadata required to handle the transaction on the processor side.

description String

Transaction description.

request_log JSON Object

Contains information on the origin of the request: country, ip_address, user_agent and the

library_version. Defaults to the one who made the request.

RESULT

 {

 "id": "2d017c99745a15ddeda9ba0e35d8e1e26d3b512a5bc5d259",

Page 139
[Technical Documentation]

 "amount": 1.0,

 "success": true,

 "description": "Unapplied coupon",

 "created_at": "2018-10-16T15:15:34.694149+00:00",

 "payment": {

 "id": "ed9fdf723c40fada03b6ce783beb182376a85c735b3e2f27"

 },

 "request_log": {

 "country": null,

 "ip_address": "127.0.0.1",

 "user_agent": "curl/7.54.0",

 "library_version": null

 },

 "external_ids": {

 "transaction_id_trunc": "918dd9382a17be5d060f9a8dd15674",

 "processor": "8a8294496421b8d30164222227f17687",

 "transaction_id": "918dd9382a17be5d060f9a8dd15674b047b7f5d15b3e2f27"

 },

 "failure_description": null

 }

Result Parameter

id String

Unique identifier of the payment.

amount Float

The refund amount. It must not exceed the payment amount.

success Boolean

Flag indicating whether the refund was successfully created.

external Boolean

Indicates if the created charge was created as an external source.

description String

Transaction description.

created_at String

Page 140
[Technical Documentation]

The date when the payment was created.

payment JSON Object

Contains a trimmed object of the related payment: id.

request_log JSON Object

Contains information on the origin of the request: country, ip_address, user_agent and the

library_version.

external_ids JSON Object

Useful external ids (e.g. IDs from the processing channel).

failure_description String

If the refund is not successful, this field has details about the failure.

04.6_Error Codes

Here you can find codes and descriptions of all errors that may occur when you communicate

with the Payshop Online Payments Platform APIs.

Error Code Format: XX.YY.ZZZZ (numeric)

● 01.YY.ZZZZ: Validation Errors

The request failed because there are issues with the data being sent.

● 02.YY.ZZZZ: Soft Declines

The request was declined. Yet, subsequent attempts may be successful.

● 03.YY.ZZZZ: Hard Declines

The request was declined. Most hard declines require the Issuer or Customer to rectify

issue(s) before a subsequent attempt can be made.

● 04.YY.ZZZZ: Communication

Problems in the communication between the Payshop Online Payments platform and the

Processor. If these issues are recurring, it is important to check for the root cause.

Page 141
[Technical Documentation]

● 05.YY.ZZZZ: Implementation

Errors raised when the integration with the Payshop Online Payments Platform was

performed incorrectly.

● 06.YY.ZZZZ: Risk

Possible fraudulent activities.

● 99.YY.ZZZZ: Unhandled Errors

The request failed due to unspecified reasons. Further analysis might be needed.

Validation Errors

Error Code Designation Description

01.01.0000 Invalid
Parameters

Request containing invalid parameters (e.g. email
address).

01.02.0000
Amount
Mismatch

Invalid amount. The amount inputted does not match the
request.

01.03.0000
Instrument
Mismatch

Request containing invalid instrument details. The
payment instrument used does not match the criteria set
by the processor.

Soft Declines

Error Code Designation Description

Page 142
[Technical Documentation]

02.00.0001 Failure Failure originated in the processor.

02.01.0000 Too Many Tries You have exceeded the maximum number of tries.

02.02.0000 Limit Exceeded The customer exceeds the maximum allowed limit.

02.03.0000 Insufficient Funds There are not enough funds to complete this payment.

02.04.0000 Temporary Issue
There is a temporary problem with your submission.
Retry.

Hard Declines

Error Code Designation Description

03.00.0001 Processor Declined The processor refused the transaction request.

03.00.0002 Instrument Expired The payment Instrument being used has expired.

03.01.0000 Disabled Account The customer’s account has been disabled.

03.02.0000 Unsupported Value Unsupported value for this request. Review the
content and retry.

Page 143
[Technical Documentation]

03.02.0001
Unsupported
Scheme

Your payment instrument does not support this type
of purchase.

03.02.0002 Unsupported BIN Unsupported bank identification number.

03.03.0000 Card is Declined
The transaction is refused by the issuer. Use a
different card or contact your bank for further details.

03.03.0001
Card is Flagged as
Lost/Stolen/Expired
/ Restricted

Card flagged as lost, stolen, expired, or restricted.

03.04.0000
Duplicate
Operation

A transaction request with the same information has
already been submitted.

Communication

Error Code Designation Description

04.01.0000
Processor
Unavailable

Processor not available to confirm the transaction.

04.02.0000
Timeout
Communicating
With Processor

The server took too long to respond. Check the status
of the transaction. Retry if needed.

Page 144
[Technical Documentation]

Implementation

Error Code Designation Description

05.01.0000 Configuration Error Channel is not correctly configured.

05.02.0000 Processor
Configuration Error

Processor is not correctly configured.

05.01.0002
Merchant
Configuration Error

Merchant account is not correctly configured in
the processor.

05.02.0000
Invalid Processor
Credentials

The credentials supplied do not grant access to
the requested resource.

05.03.0000 Authorization Error Permissions error.

05.03.0001
Processor
Authorization Error

Permissions error coming from the processor.

05.03.0002 Merchant
Authorization Error

Access to resource denied. Verify your account
permissions.

05.04.0000
Feature Not
Available

Feature does not exist.

Page 145
[Technical Documentation]

05.04.0001
Instrument Already
Captured

The status of the instrument does not allow for
your request (eg. reversing a card authorization
that is already captured).

05.04.0002
Instrument Not
Authorized

The instrument verification does not allow for your
request (eg. reversing a card authorization with
3DS that is still not authorized).

Unhandled Errors

Error Code Designation Description

99.00.0000 Unspecified Error Unknown/unspecified errors that do not fit any other
category.

99.01.0000
Internal Server
Error

The server encountered an internal error or
misconfiguration and was unable to complete your
request.

99.02.0000 Processor
Integration Error

Issue(s) with the processor integration.

99.02.0001
Unexpected
Processor
Response

Processor response does not match the expected
parameters.

99.02.0002
Unable To Read
Processor
Response

Processor response cannot be interpreted.

Page 146
[Technical Documentation]

99.02.0003
Processor
Resource Not
Found

Processor issued resources do not match the needs of
your request.

99.02.0004
Processor
Unhandled Error

The request failed due to unspecified reasons. Issue not
addressed by the processor.

04.6.1_Testing

Error handling is an important step in integration. To aid with error testing we have made

triggering these errors a straightforward process. You only need to mind the amount set when

you create a transaction.

In order to come up with the right amount to trigger the error you are looking for, mind the

following instructions:

● Amount: XZZZZ.YY (numeric);

● The integer part of the amount represents the error code that will be returned. The

decimal part of the amount represents the element from which the error originates

(e.g. 0.10 for Charge, 0.20 for Instrument, 0.30 for Payment, 0.40 for Refund, 0.50 for

Reversal);

● Do not include the "." separators and the leading "0"s in this number.

Examples:

● "amount": 6020000.20

Results in an instrument error (0.20), error code 06.02.0000.

● "amount": 3030001.30

Results in a payment error (0.30), error code 03.03.0001.

Page 147
[Technical Documentation]

Let’s use the first amount to exemplify the procedures involved in triggering an error.

"amount": 6010000.20

Results in an instrument error (0.20), error code 06.01.0000.

CREATE CHARGE: REQUEST PARAMETERS

$ curl -vX POST https://api.switchpayments.com/v2/charges -u accountId:privateKey -d '{

 "charge_type": "card_onetime",

 "amount": 6020000.20,

 "currency": "EUR",

 "events_url": "https://merchant.com/events",

 "channels": ["card_onetime_no_processor"]

}

"amount": 6020000.20

All transactions begin with a charge. When creating this charge, you should input the amount

that corresponds to the error you intend to trigger.

Additionally, you should note that the amount that defines the error is always the charge

amount, even if the current resource allows for a different amount to be set (e.g. payments,

refunds).

"channels": ["card_onetime_no_processor"]

You should use a no_processor channel for error testing. Channels result from a concatenation of

the charge_type applied and the actual channel used for the transaction, hence the

["card_onetime_no_processor"] in this case.

To gain access to this test channel and proceed with error testing you should contact our

Support Department.

Page 148
[Technical Documentation]

CREATE CHARGE: RESULT PARAMETERS

{

 "id": "675d32208a91bd3ad70641ba7f810036c65f5bb75ea9897f",

 "external_ids": null,

 "charge_type": "card_onetime",

 "charge_type_label": "Card One-Time",

 "amount": 6020000.2,

 "currency": "EUR",

 "events_url": "https://merchant.com/events",

 "redirect_url": "",

 "metadata": {},

 "instrument_params": null,

 "failure_code": null,

 "failure_description": null,

 "channels": [

 {

 "id": "d33577bcdc1ed9e106c050ff02bcccc285d57c5c5ea98619",

 "label": "card_onetime_no_processor",

 "processor": "no_processor"

 }

],

 "confirmed": true,

 "created_at": "2020-04-29T14:04:47.145730+00:00",

 "expires_at": null,

 "updated_at": "2020-04-29T14:04:47.145770+00:00",

 "request_log": {

 "ip_address": "89.155.14.252",

 "country": "PT",

 "user_agent": "PostmanRuntime/7.24.1",

 "library_version": null

 },

 "external": false

}

The error we are triggering is generated in an Instrument. Next, create an instrument deriving

from the previous Charge, using the correspondent charge_id.

Page 149
[Technical Documentation]

CREATE CHARGE: REQUEST PARAMETERS

 {

 "charge": "675d32208a91bd3ad70641ba7f810036c65f5bb75ea9897f",

 "name": "John doe",

 "number": "4111111111111111",

 "expiration_month": 12,

 "expiration_year": 2020,

 "cvc": "007"

 }

You should find the error in the response. In this case, we triggered a 06.02.0000: Unsafe

Transaction. The respective Instrument generated is Invalid, as observable in the Switch

Dashboard.

CREATE INSTRUMENT: REQUEST PARAMETERS

 {

 "message": "Transaction Error",

 "metadata": {

 "failure_description": null

 },

 "failure_description": "Unsafe Transaction",

 "failure_code": "06.02.0000"

}

Page 150
[Technical Documentation]

05_Processing

Every payment flow, one integration.

A key element of the Payshop Online Payments platform is its ability to process transactions

and leverage the resulting data to feed the Reconciliation, Risk, and Analytics Applications.

Transactions represent a central role in the Payshop Online Payments platform, around which

all its components have been devised. This led us to create an API solely dedicated to

performing operations on transactions - the Processing API. These operations include the

mechanisms mentioned below and can be applied to multiple types of elements. In the

Processing API we highlight charge, instrument, payment, reversal and refund.

01
Create charge, instrument and payment

Multiple single events make up the different platform elements. Quickly

understanding how to create them and the requirements needed to do so,

can speed up your process. Explore how to create charges, instruments and

payments.

02

Refund and reversal

Sometimes transactions do not carry their natural course. When it comes to

interacting with consumers about reversing a charge or setting up a refund,

you can use our Processing API.

 Charge
A charge represents the

merchant request to either
pull funds or push funds into

a customer’s account.

 Instrument
The instrument

encompasses the data used
to authenticate the

customer.

Payment
A payment is a transaction

authorization from a
provider.

Page 151
[Technical Documentation]

Reversal
Reverse a payment before it

officially goes through.

Refund
After the transaction has

been completed and before
the customer has filled an
official dispute, refunds are
the right method to reverse

a payment.

Channels
 Combine payment methods

 and providers of choice.
 Each channel opens a world

 of opportunity for your
 payment operations.

05.1_Charge

A charge represents the merchant request to either pull funds or push funds into a user’s

account. When dealing with charges, you should be mindful of the payment channel , also

known as charge_type, the amount, the currency and the necessary metadata for transaction

reconciliation, such as user ID and order ID. The charge is the precursor to the instrument.

GET /v2/charges/types

Method Path Description

POST Sandbox
https://api.switchpayments.com/v2/charges/types

Production
https://api.switchpayments.com/v2/charges/types

List the available charge
types, meaning payment
methods. This list
includes all the fields
that should be displayed
on checkout and filled
out by the customer.

REQUEST

$ curl GET https://api.switchpayments.com/v2/charges/types -u publicKey:

Page 152
[Technical Documentation]

RESPONSE : HTTP 201

{

 "collection": [

 "...",

 {

 "id": "card_onetime",

 "payout": false,

 "label": "Card One-Time",

 "capture_on_creation": true,

 "schema_merchant": {

 "type": "object",

 "properties": {

 "enabled3ds": {

 "type": "boolean"

 }

 }

 },

 "schema": {

 "title": "Credit/Debit Card",

 "type": "object",

 "required": ["name", "number", "expiration_month", "expiration_year", "cvv"],

 "properties": {

 "expiration_month": {

 "minimum": 1,

 "type": "integer",

 "maximum": 12,

 "title": "Expiration Month"

 },

 "cvc": {

 "minLength": 3,

 "maxLength": 4,

 "type": "string",

 "title": "CVV"

 },

 "number": {

 "minLength": 14,

 "maxLength": 19,

 "type": "string",

 "title": "Card Number"

 },

 "expiration_year": {

 "type": "integer",

 "title": "Expiration Year"

 },

 "name": {

 "minLength": 3,

Page 153
[Technical Documentation]

 "maxLength": 255,

 "type": "string",

 "title": "Cardholder Name"

 }

 }

 },

 "ui_schema": {

 "name": {

 "ui:placeholder": "Full Name"

 },

 "number": {

 "ui:placeholder": "1111 2222 3333 4444"

 },

 "cvc": {

 "ui:placeholder": "123",

 "ui:help": "Last 3 digits on the back of the card"

 }

 }

 },

 "..."

]

 }

Response Parameters

collection Array

An array of JSON objects that contains all the charge types currently active.

id String

This is an unique identifier for the charge type.

name String

Indicates whether the current charge type is designed to pay or receive funds.

● true: the charge type is a payout;

● false: the charge type is not a payout.

label String

User-friendly name that describes the charge type.

capture_on_creation string

Page 154
[Technical Documentation]

Indicates whether the current charge type is a capture on creation transaction flow.

It defines whether or not a payment should be requested on a successful instrument

creation.

● true: the charge type captures funds on creation;

● false: the charge type does not capture funds on creation.

schema_merchant JSON Schema Object

This field specifies the parameters to be completed on the merchant side. These are

the parameters that should be included in instrument_params and cannot be

overridden by the customer, such as enable3DS.

type String

The data type included in this property.

properties JSON Object

A JSON Object documenting each of the properties that should be collected from

the user for the charge type in question.

schema JSON Schema Object

Documents the data that should be collected for this charge type. This data can vary

between different payment methods. To better understand the different

requirements for each provider check out Integration Resources.

title String

The user interface identifier for the charge type, meaning payment method.

type String

The data type included in this property.

required Array

List of mandatory fields the customer should fill out to proceed with the charge.

properties JSON Object

A JSON object documenting the available payment provider specific parameters and

data types.

Page 155
[Technical Documentation]

minimum Number

The minimum value supported for this property. It applies when the data type is a

number.

maximum Number

The maximum value supported for this property. It applies when the data type is a

number.

type String

The data type of the property being collected.

title String

The user interface identifier for the property being collected.

minLength Number

The minimum supported length for this property. It applies when the data type is a

string.

maxLength Number

The maximum supported length for this property. It applies when the data type is a

string.

ui_schema JSON Schema Object

This JSON object contains the user interface information used to aid in rendering the

required input collection forms. It is useful when using Dynamic Forms.

ui:placeholder String

Contains the placeholder text that should be added to the input of the property. This

exemplifies to the user the required input.

ui:help Number

Contains helpful indications for the user regarding the property in question.

POST/v2/charges

Page 156
[Technical Documentation]

Method Path Description

POST Sandbox
https://api.switchpayments.com/v2/charges

Production
https://api.switchpayments.com/v2/charges

Creates a new charge for
a given transaction.

REQUEST

 $ curl -vX POST https://api.switchpayments.com/v2/charges -u accountId:privateKey -d '{

 "charge_type": "card_onetime",

 "amount": 42,

 "currency": "EUR",

 "metadata": {"orderId": "1337"},

 "events_url": "https://merchant.com/events",

 "redirect_url": "https://merchant.com/redirect",

 "instrument_params": {"descriptor": "D891220"},

 "channels": ["card_onetime_acapture"]

 }'

Request Parameters

charge_type String Required

Payment method selected by the customer.

amount Number Required

Amount of the transaction in question.

currency String Required

Currency used in this transaction.

metadata JSON Object

Any metadata that uniquely identifies this transaction in your system. This field is

used to identify this transaction when handling events, searching for transactions on

the Dashboard, dynamically routing transactions or managing Risk.

Page 157
[Technical Documentation]

events_url String

HTTPS merchant server-side webhook where events will be handled.

redirect_url String

HTTPS URL, or URL schemas when considering mobile apps, to send users back to.

This field applies to payment methods that require customer redirection, such as

Paypal or 3DS enabled credit cards.

instrument_params JSON Object

With this field the merchant can pass parameters which will be used when creating

the instrument.

failure_code String

For charge elements that failed to be created, this field will document the associated

error code.

failure_description String

Documents a user interface description of why this particular charge element failed

to be created.

channels Array

Indicates which channels you use for the transaction. In case it is empty the default

channel will be used.

RESPONSE : HTTP 201

 {

 "id": "ceb69ab2eeb161ee6ed4906bff883dc1c82f3fb95f1859f1",

 "external_ids": null,

 "charge_type": "card_onetime",

 "charge_type_label": "Card One-Time",

 "amount": 42.0,

 "currency": "EUR",

 "events_url": "https://merchant.com/events",

 "redirect_url": "https://merchant.com/redirect",

 "metadata": {

 "orderId": "1337"

 },

Page 158
[Technical Documentation]

 "instrument_params": {

 "descriptor": "D891220"

 },

 "failure_code": null,

 "failure_description": null,

 "channels": [

 {

 "id": "704d26ef06980411b178d5436294b8d99e443abc5b1ead14",

 "label": "card_onetime_acapture",

 "processor": "acapture"

 }

],

 "confirmed": true,

 "created_at": "2020-07-22T15:23:29.253599+00:00",

 "expires_at": null,

 "updated_at": "2020-07-22T15:23:29.253650+00:00",

 "request_log": {

 "ip_address": "149.90.219.7",

 "country": "PT",

 "library_version": null

 },

 "external": false

 }

Response Parameters

id String

The charge ID that can be used once to create an instrument.

charge_type String

Identifier of the charge type, or payment method.

charge_type_label String

User-friendly identifier of the charge type, or payment method.

amount Float

Amount set for the charge.

Currency String

The currency used in the charge.

Page 159
[Technical Documentation]

schema_merchant JSON Schema Object

This field specifies the parameters to be completed on the merchant side. These are

the parameters that should be included in instrument_params and cannot be

overridden by the customer, such as enable3DS.

events_url String

HTTPS merchant server-side webhook where events will be handled.

redirect_url String

HTTPS URL, or URL schemas when considering mobile apps, to send users back to.

This field applies to payment methods that require customer redirection, such as

Paypal or 3DS enabled credit cards.

metadata JSON Schema Object

Any metadata that uniquely identifies this transaction in your system. This field is

used to identify this transaction when handling events, searching for transactions on

the Switch Dashboard, dynamically routing transactions or managing Risk.

instrument_params JSON Object

With this field the merchant can pass parameters which will be used when creating

the instrument.

channels Array

Indicates which channels you use for the transaction. In case it is empty the default

channel will be used.

confirmed Boolean

Indicates if the created charge was confirmed by the merchant using their private

key.

● true: the charge was confirmed by the merchant using their private key;

● false: the charge was not confirmed by the merchant using their private key.

events_url String

The instrument parameters used to create the charge

Page 160
[Technical Documentation]

created_at String

The date when the charge was created.

expires_at Date

The date when the charge was last updated

request_log JSON Object

Contains information on the origin of the request, such as country, ip_address,

user_agent and the library_version.

title String

The user interface identifier for the property being collected.

external Boolean

This boolean flag indicates if the current charge has been created in the Payshop

Online Payments platform or if it was incorporated via external sources.

● true: the charge has been created by the platform;

● false: the charge was created outside of the platform.

> Check out the following use cases

It is not possible to create a charge without registering all the required fields. Tending to this

error case, a list with all the invalid fields and the respective errors is returned.

REQUEST

$ curl -vX POST https://api.switchpayments.com/v2/charges -u accountId:privateKey -d '{

 "charge_type": "card_onetime",

 "amount": 42

 }'

Response Parameters

Page 161
[Technical Documentation]

message String

String with the error details. In this case: "Invalid parameters".

parameters JSON Object

A list with all the invalid fields and the respective errors.

RESPONSE : HTTP 400

{

 "message": "Invalid parameters",

 "parameters": {

 "currency": [

 "This field is required."

],

 "events_url": [

 "This field is required."

]

 }

 }

It is possible to pass instrument parameters when creating a charge. For example, we can use

the instrument_params in the charge to enable 3DS, as follows.

REQUEST

 $ curl -vX POST https://api.switchpayments.com/v2/charges -u accountId:privateKey -d '{

 "charge_type": "card_onetime",

 "currency": "EUR",

 "amount": 10,

 "metadata": {"orderId":"837232"},

 "events_url": "https://merchant.com/events",

 "instrument_params": {"enable3ds": true}

 }'

RESPONSE : HTTP 200

Page 162
[Technical Documentation]

 {
 "id": "35ed95bfb772b94c4e59f91fcbef0f5618d46e3d5b2b7da5",

 "charge_type": "card_onetime",

 "amount": 10,

 "currency": "EUR",

 "confirmed": true,

 "instrument_params": {

 "enable3ds": true

 },

 "events_url": "https://merchant.com/events",

 "expires_at": "2018-06-21T10:32:49.241268+00:00",

 "channels": null,

 "charge_type_label": "Card One-Time",

 "redirect_url": "",

 "metadata": {

 "orderId": "837232"

 },

 "external_ids": null,

 "request_log": {

 "country": null,

 "ip_address": "100.10.10.10",

 "user_agent": "curl/7.54.0",

 "library_version": null

 },

 "created_at": "2018-06-21T10:27:49.241769+00:00",

 "updated_at": "2018-06-21T10:27:49.241800+00:00"

 }

It is also possible to choose what channel you want to use for the transaction by making

changes to the channels field in the charge.

REQUEST

$ curl -vX POST https://api.switchpayments.com/v2/charges -u accountId:privateKey -d '{

 "charge_type": "card_onetime",

 "currency": "EUR",

 "amount": 10,

 "metadata": {"orderId":"837232"},

 "events_url": "https://merchant.com/events",

 "channels": ["card_onetime_checkout"]

 }'

Page 163
[Technical Documentation]

05.2_Instrument

The instrument is the object used to initiate the transfer of funds. Instruments come in many

shapes and sizes, they are collections of the authentication parameters for any given payment

method. You should watch out for fingerprints and status when evaluating instruments.

Authentication fields for a card can include parameters like cardholder_name, PAN, CVV and

expiry_date, whereas payment methods like PayPal would only require a redirection_url. Each

instrument generates one or more payment objects.

The following request examples describe a card_onetime instrument. Each charge type has

its own required fields which you should be mindful of when setting up your requests. For

more information on this topic, access Integration Resources.

POST /v2/instruments

Method Path Description

POST Sandbox
https://api.switchpayments.com/v2/instruments

Production
https://api.switchpayments.com/v2/instruments

Creates a new
instrument for a given
transaction.

REQUEST

 $ curl -vX POST https://api.switchpayments.com/v2/charges -u publicKey -d '{

 "charge": "a325e88948799260d9d8319a3ddb79ff2f74bbf35f198b30",

 "name": "John Doe",

 "number": "4111111111111111",

 "expiration_month": 12,

 "expiration_year": 2030,

 "cvc": "007"

 }'

Page 164
[Technical Documentation]

Request Parameters

charge String Required

The identifier of the charge associated with this payment that was previously
created.

name String Required

The cardholder name.

number Number Required

The credit card number.

expiration_month Number Required

Expiration month for the card being used.

expiration_year Number Required

Expiration year for the card being used. Mind this value in your tests, dates in the
past can generate errors.

cvc Integer Required

The card verification code.

RESPONSE : HTTP 201

 {
 "id": "e866b0f517e92bd392183e53450dd6bd87e8cdc35f199c3c",

 "external_ids": {

 "processor": "8ac7a49f737620a201737c0a4bfb669c",

 "descriptor": "3750.0784.9102 Switch CC"

 },

 "success": true,

 "status": "authorized",

 "failure_code": null,

 "failure_description": null,

 "params": {

 "name": "John doe",

 "expiration_month": 12,

 "expiration_year": 2030,

Page 165
[Technical Documentation]

 "descriptor": "D891220",

 "card_bin": "411111",

 "card_last_4_digits": "1111",

 "bin": "411111",

 "last_4_digits": "1111",

 "card_bank": "JPMORGAN CHASE BANK, N.A.",

 "card_brand": "VISA",

 "card_country": "US",

 "card_account_type": "CREDIT",

 "bank": "JPMORGAN CHASE BANK, N.A.",

 "bank_phone": "1-212-270-6000",

 "brand": "VISA",

 "country": "UNITED STATES",

 "country_isoa2": "US",

 "country_isoa3": "USA",

 "country_isonumber": "840",

 "type": "CREDIT"

 },

 "fingerprint":

"947cc6e0e908f1e7c2670a4e44a8194397966738d0fae5640f9889f2f1fbc16eef7dd19dc4603a5632d69087e6969ea

5de876bca6db687b922ac999a6fddfb56",

 "reference": null,

 "response": null,

 "redirect": null,

 "created_at": "2020-07-23T14:18:36.596701+00:00",

 "updated_at": "2020-07-23T14:18:36.596722+00:00",

 "request_log": {

 "ip_address": "149.90.219.7",

 "country": "PT",

 "user_agent": "PostmanRuntime/7.26.2",

 "library_version": null

 },

 "external": false,

 "recurring": false,

 "capture_on_creation": true,

 "channel": {

 "id": "704d26ef06980411b178d5436294b8d99e443abc5b1ead14",

 "label": "card_onetime_acapture",

 "processor": "acapture"

 },

 "used": true,

 "last_payment": {

 "id": "2dfba90fcc304376701a2691677d1e68713bb8075f199c3c",

 "success": true,

Page 166
[Technical Documentation]

 "status": "success"

 },

 "charge": {

 "id": "a325e88948799260d9d8319a3ddb79ff2f74bbf35f198b30",

 "charge_type": "card_onetime",

 "charge_type_label": "Card One-Time",

 "amount": 42.0,

 "currency": "EUR",

 "created_at": "2020-07-23T13:05:52.777328+00:00"

 }

 }

Response Parameters

id String

The ID that uniquely identifies the instrument element for this transaction.

external_ids String

A JSON Object documenting any external ID that the payment provider has related

to the current instrument, if applicable.

success String

This boolean flag indicates whether the current Instrument has been successfully

created.

● true: the instrument has been successfully created;

● false: the instrument has failed to be created.

status String

Documents the execution status for the instrument.

● authorized: the instrument was successfully authorized by the provider;

● invalid: the instrument was considered invalid by the Payshop Online

Payments platform or the Provider;

● pending: indicates that additional information is still necessary to proceed

forward.

Page 167
[Technical Documentation]

failure_code Number

For instrument elements that failed to be created, this field will document the

associated error code.

failure_description String

Documents a user interface description of why this particular instrument element

failed to be created.

parameters JSON Object

Contains the parameters that identify the customer and/or the payment instrument.

fingerprint String

A unique, one-way hash fingerprint of the Instrument, which can be leveraged for

risk prevention purposes.

reference String

Only applicable to payment methods that require the customer to complete the

transaction asynchronously outside of the Payshop Online Payments platform.

Documents the information required to the customer. The specific schema of this

object will depend on the payment method being used.

response JSON Object

Contains the technical information returned by the provider when processing the

current instrument, such as the card ECI code.

redirect JSON Object

Used for payment methods that require redirection, documents the information

required to direct the user to the page where the transaction can be completed.

● url: the URL to where the user should be redirected;

● method: the HTTP method that should be used when performing the URL

call;

● params: the parameters that should be passed along with the URL call.

created_at Date

Contains the date and time when the instrument element was originally created.

Page 168
[Technical Documentation]

updated_at Date

Stores the date and time when the instrument element was last updated.

request_log JSON Object

Stores information about the location and browser used to create the instrument

element, such as the country of the IP address or the user agent.

external Boolean

This boolean flag indicates if the current instrument has been created in the Payshop

Online Payments platform or if it was injected via external sources.

● true: the instrument has been created by the platform;

● false: the instrument was created outside of the platform.

recurring Boolean

This boolean flag indicates if the current instrument is classified as recurring.

● true: it is a recurring instrument;

● false: it is not a recurring instrument.

capture_on_creation Boolean

This boolean flag indicates if the current instrument is classified as captured on

creation.

● true: capture on creation instrument, the payment is automatically captured

on the instrument authorization;

● false: not a capture on creation instrument.

channel JSON Object

Documents the properties of the channel that was used to process this given

instrument element.

● id: identification of the channel being used;

● label: user-friendly designation of the channel being used;

● processor: provider associated with the transactions in this channel.

used Boolean

Indicates whether a successful payment was already completed with the instrument

in question.

Page 169
[Technical Documentation]

● true: this instrument was already used in a successful payment;

● false: this instrument was not previously applied to a successful payment.

last_payment JSON Object

Contains details on the last payment performed with the instrument in question.

charge JSON Object

Describes the charge element that was used to create this instrument.

> Check out the following use case

For Payment Methods that require a reference JSON Object, such as Multibanco, the field will

contain the structure below. Please note that this information should be shown to the

customer.

REFERENCE

 {

 "reference": {

 "fields": [

 {"field": "entity", "value": "815412", "label": "Entity"},

 {"field": "reference", "value": "412523632", "label": "Reference"},

 {"field": "value", "value": "10", "label": "Value"}

]

 }

 }

GET /v2/instruments/{id}

Merchants are able to make GET /v2/instruments requests with both private and public

credentials. The response is different for either case, as shown in the following examples.

Page 170
[Technical Documentation]

Method Path Description

GET Sandbox
https://api.switchpayments.com/v2/instruments/{id}

Production
https://api.switchpayments.com/v2/instruments/{id}

Gets the details of an
instrument element
using its ID.

REQUEST ACCOUNTID:PRIVATEKEY

 $ curl -vX GET https://api.switchpayments.com/v2/instruments/{id}

 -u accountId:privateKey

RESPONSE: HTTP 200

 {
 "id": "ca4cb4177f8f9b18726f3605f25c3fa5412a8f2e5f157233",

 "external_ids": {

 "processor": "8ac7a4a0736acff601736bc61b003fbf",

 "descriptor": "4645.9162.8814 Switch CC"

 },

 "success": true,

 "status": "authorized",

 "failure_code": null,

 "failure_description": null,

 "params": {

 "name": "John Doe",

 "expiration_month": 12,

 "expiration_year": 2020,

 "card_bin": "411111",

 "card_last_4_digits": "1111",

 "bin": "411111",

 "last_4_digits": "1111",

 "card_bank": "JPMORGAN CHASE BANK, N.A.",

 "card_brand": "VISA",

 "card_country": "US",

 "card_account_type": "CREDIT",

 "bank": "JPMORGAN CHASE BANK, N.A.",

 "bank_phone": "1-212-270-6000",

 "brand": "VISA",

 "country": "UNITED STATES",

Page 171
[Technical Documentation]

 "country_isoa2": "US",

 "country_isoa3": "USA",

 "country_isonumber": "840",

 "type": "CREDIT"

 },

 "fingerprint":

"947cc6e0e908f1e7c2670a4e44a8194397966738d0fae5640f9889f2f1fbc16eef7dd19dc4603a5632d69087e6969ea

5de876bca6db687b922ac999a6fddfb56",

 "reference": null,

 "response": null,

 "redirect": null,

 "created_at": "2020-07-20T10:30:12.132238+00:00",

 "updated_at": "2020-07-20T10:30:12.132259+00:00",

 "request_log": {

 "country": "PT",

 "ip_address": "149.90.219.7",

 "user_agent": "PostmanRuntime/7.26.1",

 "library_version": null

 },

 "external": false,

 "recurring": false,

 "capture_on_creation": true,

 "channel": {

 "id": "9a48d37466f9323dc8c305fbf082fe5b80ca75b95af9ba98",

 "label": "wirecard",

 "processor": "acapture"

 },

 "used": true,

 "last_payment": {

 "id": "d1d44207a96f9c10c6ab7a6e43309937045453c65f157234",

 "success": true,

 "status": "success"

 },

 "charge": {

 "id": "3307721a72908e1a7a68d81ea9e08b758b63a87c5f157224",

 "charge_type": "card_onetime",

 "charge_type_label": "Card One-Time",

 "amount": 100.0,

 "currency": "EUR",

 "created_at": "2020-07-20T10:29:56.768942+00:00",

 "metadata": {

 "name": "Maria"

 }

 }

Page 172
[Technical Documentation]

 }

Response Parameters

id String

The ID that uniquely identifies the instrument element for this transaction.

external_ids String

A JSON Object documenting any external ID that the payment provider has related

to the current instrument, if applicable.

success String

This boolean flag indicates whether the current Instrument has been successfully

created.

● true: the instrument has been successfully created;

● false: the instrument has failed to be created.

status String

Documents the execution status for the instrument.

● authorized: the instrument was successfully authorized by the provider;

● invalid: the instrument was considered invalid by the Payshop Online

Payments platform or the provider;

● pending: indicates that additional information is still necessary to proceed

forward.

failure_code String

For instrument elements that failed to be created, this field will document the

associated error code.

failure_description String

Documents a user interface description of why this particular instrument element

failed to be created.

parameters JSON Object

Page 173
[Technical Documentation]

Contains the parameters that identify the customer and/or the payment instrument.

fingerprint String

A unique, one-way hash fingerprint of the Instrument, which can be leveraged for

risk prevention purposes.

reference String

Only applicable to payment methods that require the customer to complete the

transaction asynchronously outside of the Payshop Online Payments platform.

Documents the information required to the customer. The specific schema of this

object will depend on the payment method being used.

response JSON Object

Contains the technical information returned by the provider when processing the

current instrument, such as the card ECI code.

redirect JSON Object

Used for payment methods that require redirection, documents the information

required to direct the user to the page where the transaction can be completed.

● url: the URL to where the user should be redirected;

● method: the HTTP method that should be used when performing the URL

call;

● params: the parameters that should be passed along with the URL call.

created_at Date

Contains the date and time when the instrument element was originally created.

updated_at Date

Stores the date and time when the instrument element was last updated.

request_log JSON Object

Stores information about the location and browser used to create the instrument

element, such as the country of the IP address or the user agent.

external Boolean

Page 174
[Technical Documentation]

This boolean flag indicates if the current instrument has been created in the Payshop

Online Payments platform or if it was injected via external sources.

● true: the instrument has been created by the platform;

● false: the instrument was created outside of the platform.

recurring Boolean

This boolean flag indicates if the current instrument is classified as recurring.

● true: it is a recurring instrument;

● false: it is not a recurring instrument.

capture_on_creation Boolean

This boolean flag indicates if the current instrument is classified as captured on

creation.

● true: capture on creation instrument, the payment is automatically captured

on the instrument authorization;

● false: not a capture on creation instrument.

channel JSON Object

Documents the properties of the Channel that was used to process this given

instrument element.

● id: identification of the channel being used;

● label: user-friendly designation of the channel being used;

● processor: provider associated with the transactions in this channel.

used Boolean

Indicates whether a successful payment was already completed with the instrument

in question.

● true: this instrument was already used in a successful payment;

● false: this instrument was not previously applied to a successful payment.

last_payment JSON Object

Contains details on the last payment performed with the instrument in question.

charge JSON Object

Page 175
[Technical Documentation]

Describes the charge element that was used to create this instrument.

REQUEST PUBLICKEY

 $ curl -vX GET https://api.switchpayments.com/v2/instruments/{id}

 -u publicKey

RESPONSE: HTTP 200

 {
 "id": "ca4cb4177f8f9b18726f3605f25c3fa5412a8f2e5f157233",

 "success": true,

 "status": "authorized",

 "used": true,

 "last_payment": {

 "id": "d1d44207a96f9c10c6ab7a6e43309937045453c65f157234",

 "success": true,

 "status": "success"

 },

 "created_at": "2020-07-20T10:30:12.132238+00:00",

 "updated_at": "2020-07-20T10:30:12.132259+00:00"

 }

Response Parameters

id String

The ID that uniquely identifies the instrument element for this transaction.

success String

This boolean flag indicates whether the current Instrument has been successfully

created. true: the instrument has been successfully created. false: the instrument has

failed to be created.

status String

Documents the execution status for the instrument.

● authorized: the instrument was successfully authorized by the provider;

Page 176
[Technical Documentation]

● invalid: the instrument was considered invalid by the Payshop Online

Payments platform or the provider;

● pending: indicates that additional information is still necessary to proceed

forward.

used Boolean

Indicates whether a successful payment was already completed with the instrument

in question.

● true: this instrument was already used in a successful payment;

● false: this instrument was not previously applied to a successful payment.

last_payment JSON Object

Contains the technical information returned by the provider when processing the

current instrument, such as the card ECI code.

created_at Date

Contains the date and time when the instrument element was originally created.

updated_at Date

Stores the date and time when the instrument element was last updated.

> Check out the following use case

For Payment Methods that require a reference JSON Object, such as Multibanco, the field will

contain the structure below. Please note that this information should be shown to the

customer.

REFERENCE

 {

 "reference": {

 "fields": [

 {"field": "entity", "value": "815412", "label": "Entity"},

 {"field": "reference", "value": "412523632", "label": "Reference"},

 {"field": "value", "value": "10", "label": "Value"}

Page 177
[Technical Documentation]

]

 }

 }

05.3_Payment

Verifying the status of payments is essential to any business. A payment is a transaction

authorization from a provider. Payments can be synchronous or asynchronous, pay-ins or

payouts, redirection-based, pre-payments or post-payments, one-time or recurring. The

payment object contains the technical information returned by the provider when processing

your payments. Every payment comes with a charge_id and instrument_id, completing the

transaction cycle.

POST /v2/instruments

Method Path Description

POST Sandbox
https://api.switchpayments.com/v2/payments

Production
https://api.switchpayments.com/v2/payments

Creates a new
payment for a given
transaction.

REQUEST

 $ curl -vX POST https://api.switchpayments.com/v2/payments -u accountId:privateKey -d '{

 "instrument": "e866b0f517e92bd392183e53450dd6bd87e8cdc35f199c3c",

 "currency": "EUR",

 "amount": 42

 }'

Request Parameters

Page 178
[Technical Documentation]

instrument String Required

The unique identifier for the instrument element that was previously created for this

transaction.

currency String Required

ISO 4217 code that indicates the currency that will be used in the transaction.

amount Number Required

The amount that should be captured from the customer.

description String

An optional textual description of the payment to provide further context.

metadata JSON Object

This object allows you to pass any transaction related data points that may be useful

to be displayed in the Dashboard for analysis purposes. This field will be used to

identify this transaction when handling events, searching for transactions on the

Dashboard, dynamically routing transactions or managing Risk.

RESPONSE : HTTP 201

 {

 "id": "ed9fdf723c40fada03b6ce783beb182376a85c735b3e2f27",

 "amount": 42,

 "currency": "EUR",

 "description": "",

 "external": false,

 "metadata": {},

 "success": true,

 "response": {

 "eci_code": "05"

 },

 "params": null,

 "refundable": true,

 "failure_description": null,

 "refunds": [],

 "instrument": {

 "id": "0d0e51462ef62787dcb711f3c7ec42d086a172f85b2b8ddc",

 "channel": {

https://www.iso.org/iso-4217-currency-codes.html

Page 179
[Technical Documentation]

 "processor": "checkout",

 "id": "85a557e4fdb6c8806f413bc75fabab162828e4f95b8e6390",

 "label": "card_onetime_checkout"

 }

 },

 "charge": {

 "charge_type": "card_onetime",

 "charge_type_label": "Card One-Time",

 "id": "ceb69ab2eeb161ee6ed4906bff883dc1c82f3fb95f1859f1",

 "metadata": {

 "orderId": "837232"

 }

 },

 "external_ids": {

 "transaction_id_trunc": "918dd9382a17be5d060f9a8dd15674",

 "processor": "8a8294496421b8d30164222227f17687",

 "transaction_id": "918dd9382a17be5d060f9a8dd15674b047b7f5d15b3e2f27"

 },

 "request_log": {

 "country": "PT",

 "ip_address": "100.10.10.10",

 "user_agent": "curl/7.54.0",

 "library_version": null

 },

 "created_at": "2018-07-05T14:46:00.040018+00:00",

 "updated_at": "2018-07-05T14:46:00.040037+00:00"

 }

Response Parameters

instrument String Required

The unique identifier for the instrument element that was previously created for this

transaction.

currency String Required

ISO 4217 code that indicates the currency that will be used in the transaction.

amount Number Required

The amount that should be captured from the customer.

https://www.iso.org/iso-4217-currency-codes.html

Page 180
[Technical Documentation]

description String

An optional textual description of the payment to provide further context.

external Boolean

Indicates whether the current payment element was not created or not by the

platform. true: the payment has not been processed by the platform. false: the

payment has been created using the platform.

metadata String

An optional textual description of the payment to provide further context.

success Boolean

This boolean flag indicates if the current payment has been successfully executed.

● true: the payment has been successfully executed;

● false: the payment has failed to be executed.

response JSON Object

Contains the technical information returned by the provider when processing the

current payment, such as the card ECI code.

refundable Boolean

Indicates whether the current payment can be refunded back to the customer, as

some payment methods do not support this operation.

● true: the payment can be refunded back to the customer;

● false: the payment cannot be refunded back to the customer.

failure_description String

Used for scenarios where the payment fails to be created, this parameter will contain

a textual description of the error.

refunds Array

Stores the properties of the refund elements related to this payment.

instrument JSON Object

Page 181
[Technical Documentation]

This JSON Object stores the properties of the instrument element related to this

payment, as described in the previous sections

charge JSON Object

This JSON Object stores the properties of the charge element related to this

payment, as described in the previous sections.

external_ids JSON Object

Documents the provider ID for the current payment, if available.

request_log JSON Object

Stores information about the device that was used to create the current payment

element, such as country, ip_address, user_agent, and library_version.

created_at Date

Indicates the date and time when the current payment element was created.

updated_at Date

Documents the date and time when the last update was performed to the current

payment.

05.4_Reversal

A reversal is a transaction cancellation previous to clearing. The reversal object translates both

reversal and void processes. A void refers to a pre-authorization cancellation.

Reversals stop the payment process in an earlier stage, before refunds or disputes become

necessary. This translates into less hassle for your customer and smaller fees for your business.

Reversals can be applied to instruments, payments, or refunds.

Keep in mind!

The correct way of performing this operation is by creating a reversal and not by deleting a payment,

instrument, or refund.

Page 182
[Technical Documentation]

POST /v2/reversals

Method Path Description

POST Sandbox
https://api.switchpayments.com/v2/reversals

Production
https://api.switchpayments.com/v2/reversals

Applies a reversal on the
instrument, payment, or
refund element, thus
canceling the
transaction
authorization. Used in
auth-capture or
recurring transaction
flows.

REQUEST

 $ curl -vX POST https://api.switchpayments.com/v2/reversals -u accountId:privateKey -d '{

 "object_type": "instrument",

 "object_id": "ed9fdf723c40fada03b6ce783beb182376a85c735b3e2f27"

 }'

Request Parameters

object_type String Required

Indicates the object type intended for reversal. Currently you are able to apply

reversal to instrument, payments, and refunds.

object_id String Required

The ID that uniquely identifies the element to participate in the reversal.

RESPONSE

 {

 "reversal": {

 "id": "3f21bd06113cc34a27c50633491886091da99ea45cf7ca1a",

 "external_ids": {

Page 183
[Technical Documentation]

 "processor": "8ac7a4a16b277c82016b27ed781065ed"

 },

 "object_id": "846ed631e9ebb72b867d38bd6d3f39a5bc9cd2025cf7c9fb",

 "object_type": "instrument",

 "amount": 10,

 "initiated_by": "merchant",

 "status": "success",

 "success": true,

 "failure_code": null,

 "failure_description": null,

 "request_log": {

 "country": null,

 "ip_address": "172.22.0.1",

 "user_agent": "PostmanRuntime/7.11.0",

 "library_version": null

 },

 "external": false,

 "created_at": "2019-06-05T13:56:43.586212+00:00"

 }

 }

Response Parameters

reversal JSON Object

A JSON object containing the details of the reversal element that was created as a

result of the object being voided.

id String

The ID that uniquely identifies the reversal element that was created to void the

instrument.

external_ids JSON Object

A JSON Object documenting any external ID that the payment provider has related

to the current reversal, if applicable.

object_id String

The unique ID of the object to which the void pertains to, in this case the instrument

element.

Page 184
[Technical Documentation]

object_type String

The type of object to which the void pertains to, in this case the instrument element.

amount Number

The amount that was voided.

initiated_by String

Indicates the transaction entity that requested the reversal. Required since a reversal

may be requested by the merchant or the provider.

status String

Documents the execution status for the void action.

● success: the instrument was successfully voided;

● error: the instrument could not be voided;

● pending: the instrument is in the process of being voided, used for providers

that have an asynchronous process.

success Boolean

This boolean flag documents if the void operation has been completed successfully.

● true: the instrument was successfully voided;

false: the instrument has not yet been voided.

failure_code Number

For reversal elements that failed to be created, this field will document the

associated error code.

request_log JSON Object

Stores information about the location and browser used to create the reversal

element, such as the country of the IP address or the user agent.

external JSON Object

This boolean flag indicates if the current reversal element has been created in the

Payshop Online Payments Platform or was later injected via external sources.

● true: the reversal has been created by the Platform;

● false: the reversal was created outside of the Platform.

Page 185
[Technical Documentation]

created_at JSON Object

Contains the date and time when the reversal element was originally created.

05.5_Refund

In a refund the payment has already been settled, but you need to return the money to the

customer, this means that with a refund you complete the transaction in reverse. When

handling refunds, you should be aware of which payment needs to be refunded, the amount

of said refund and the appropriate justification for it.

POST /v2/refunds

Method Path Description

POST Sandbox
https://api.switchpayments.com/v2/refunds

Production
https://api.switchpayments.com/v2/refunds

Creates a new refund for
a given payment.

REQUEST

 $ curl -vX POST https://api.switchpayments.com/v2/refunds -u accountId:privateKey -d '{

 "payment": "ed9fdf723c40fada03b6ce783beb182376a85c735b3e2f27",

 "amount": 42,

 "description": "Refund description"

 }'

Request Parameters

payment String Required

The identifier of the payment previously created.

Page 186
[Technical Documentation]

amount Number Required

The ID that uniquely identifies the element to participate in the reversal.

RESPONSE : HTTP 201

 {
 "id": "d243e39cdf7f55f6a185235ac8ae8d67d469b29c5b44a1f0",

 "success": true,

 "status": "success",

 "amount": 42,

 "created_at": "2018-07-10T12:09:21.227579+00:00",

 "description": "Refund description",

 "external": false,

 "external_ids": {

 "descriptor": "0957.6372.2914 Switch CC",

 "processor": "8a829449646618a10164841895d1506c",

 "transaction_id": "7b6dfed71377d4065d873342422362121600fcef5b2bb2e9",

 "transaction_id_trunc": "7b6dfed71377d4065d873342422362"

 },

 "failure_code": null,

 "failure_description": null,

 "payment": {

 "id": "ed9fdf723c40fada03b6ce783beb182376a85c735b3e2f27"

 },

 "request_log": {

 "country": "PT",

 "ip_address": "11.123.1.23",

 "library_version": null,

 "user_agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/67.0.3396.87 Safari/537.36"

 },

 "instrument": {

 "id": "0370cf3fa5f2d8b541d18bc6e39e28b01ae7aa0f5f2291f0",

 "channel": {

 "id": "9c62fb17a095f6dc32f3f36ea289f8a9473afcb95b1ead14",

 "label": "card_onetime_acapture",

 "processor": "acapture"

 }

 },

 "charge": {

Page 187
[Technical Documentation]

 "id": "8f3e835780450782d228f395a12624f2fe819ed55f2291ec",

 "charge_type": "card_onetime",

 "charge_type_label": "Card One-Time",

 "metadata": {

 "order_id": "1235f4e5456d4e56f3",

 }

 }

 }

Response Parameters

id String

Unique identifier for the refund.

success Boolean

Flag indicating whether the refund was successfully created or not.

● true: the refund was successfully created;

● false: the refund was not created.

amount Number

The refund amount. It can correspond to a partial refund or the total amount set in

the payment.

created_at Date

The date and time when the refund was created.

description String

Description of the transaction in question.

external Boolean

This boolean flag indicates if the current charge has been created in the Payshop

Online Payments platform or if it was incorporated via external sources.

● true: the charge has been created by the platform;

● false: the charge was created outside of the platform.

Page 188
[Technical Documentation]

failure_code Number

If the refund was not successful, this field contains the respective failure code.

failure_description String

If the refund was not successful, this field contains details about the failure.

payment JSON Object

Contains a summary of the payment object related to this refund.

request_log JSON Object

Contains information on the origin of the request, such as country, ip_address,
user_agent and the library_version.

instrument JSON Object

This JSON Object stores the properties of the instrument element related to this

payment, as described in the previous sections.

charge JSON Object

This JSON Object stores the properties of the charge element related to this

payment, as described in the previous sections.

Next Steps

Understand how you can use settlements and sources to watch over your transactions and how to access

agreements and disputes. Learn more about Reconciliation.

Page 189
[Technical Documentation]

06_Dynamic Routing

Optimize your payments' performance.

Dynamic Routing provides real-time switching capabilities that allow you to select the best

provider for a given transaction.

Through our Dynamic Routing components, you can add routing rules which guide

transactions around a wide network of payment channels in real-time to maximize payment

performance.

Get a better understanding of our Channels feature.

The combination of a payment method and a provider represents a

channel in the Payshop Online Payments Platform. Understand how you can

make the most of channels.

 Routing Rules
 Learn how to create and

 manage the routing rules
 that feeds Dynamic Routing.

 Conditions and

 Priority
 Set your conditions for

 Dynamic Routing. Work
 around the amount and

 processing currency
 towards the optimization

 of your transactions

Strategy

Choose the course of your
transactions towards a more
effective and cost-efficient

payment operation.

https://switchpayments.com/docs/dynamic-routing#routing-rules
https://switchpayments.com/docs/dynamic-routing#conditions-and-priority
https://switchpayments.com/docs/dynamic-routing#conditions-and-priority
https://switchpayments.com/docs/dynamic-routing#conditions-and-priority

Page 190
[Technical Documentation]

 Channels
 The combination of a

 payment method and a
 provider, including the
 integration of choice,

 represents a channel in the
 Payshop Online

Payments Platform.

06.1_Routing Rules

In case you are using the Dashboard , you can set up routing rules by accessing the specific

channel on which you want to implement Dynamic Routing.

1. On the main navigation menu, select channels.

2. From your list of available channels, select the payment method you would like to apply

Dynamic Routing to.

3. Add routing rules or edit the existing ones according to your strategy.

4. Drag and drop routing rules in the list to make changes to their priority levels.

Want to know more about the Dashboard?

By enabling the Dashboard you get access to a user-friendly management

tool to oversee your transactions. Head over to Dashboard and learn more

about it.

Dynamic Routing is established when an instrument is created.

If you are looking to understand when Dynamic Routing enters the lifecycle of your transaction, know that

routing rules are triggered upon the creation of an instrument, after a charge has already been created

and before it evolves into a payment.

https://switchpayments.com/docs/channels
https://switchpayments.com/docs/channels
https://switchpayments.com/docs/dynamic-routing#routing-rules
https://switchpayments.com/docs/dynamic-routing#routing-rules

Page 191
[Technical Documentation]

POST/v1/router/rules

Method Path Description

POST Sandbox
https://merchant-api.switchpayments.com/v1/router/rules

Production
https://merchant-api.switchpayments.com/v1/router/rules

Create a new Dynamic
Routing rule.

REQUEST

 $ curl -vX POST https://merchant-api.switchpayments.com/v1/router/rules?merchant_id={accountId} -u

accountId:merchantApiKey -d '{

 "charge_type": "card_onetime",

 "conditions": {

 "amount__gt": 50,

 "processing_currency__in": [

 "DOP"

]

 },

 "created_at": "2019-09-10T12:09:47.583718+00:00",

 "enabled": true,

 "priority": 2,

 "params": [

 {

 "channel": {

 "label": "card_onetime_cardnet",

 "processor": "cardnet",

 "id": "7581c500240442c1ec8b2f755583cdd4d488708f5ccb1ba5"

 },

 "value": 1

 }

],

 "type": "percentage",

 "id": "7d50afab5076d99ffcf84ce3abe7b056ab8844c45cd0190b"

 }

Page 192
[Technical Documentation]

Request Parameters

charge_type String

Identifier of the charge type (e.g. card_onetime, card_recurring, paypal).

conditions JSON Object

The routing conditions.

created_at String

The date when the rule was created.

updated_at String

The date when the rule was last updated.

enabled Boolean

Whether the rule is currently enabled or not.

priority Integer

The rule's priority. 0 being the top priority.

params Array

Required configurations to calculate the rule's output.

type String

Type of algorithm that will be used to select the provider.

id String

The rule's ID.

RESPONSE : HTTP 201

 {
 "charge_type": "card_onetime",

 "conditions": {

 "amount__gt": 50,

 "processing_currency__in": [

Page 193
[Technical Documentation]

 "DOP"

]

 },s

 "created_at": "2019-09-10T12:09:47.583718+00:00",

 "enabled": true,

 "priority": 2,

 "params": [

 {

 "channel": {

 "label": "card_onetime_cardnet",

 "processor": "cardnet",

 "id": "7581c500240442c1ec8b2f755583cdd4d488708f5ccb1ba5"

 },

 "value": 1

 }

],

 "type": "percentage",

 "id": "7d50afab5076d99ffcf84ce3abe7b056ab8844c45cd0190b"

 }

Result Parameters

charge_type String

Identifier of the charge type (e.g. card_onetime, card_recurring, paypal).

conditions JSON Object

The routing conditions.

created_at String

The date when the rule was created.

updated_at String

The date when the rule was last updated.

enabled Boolean

Whether the rule is currently enabled or not.

priority Integer

Page 194
[Technical Documentation]

The rule's priority. 0 being the top priority.

params Array

Required configurations to calculate the rule's output.

type String

Type of algorithm that will be used to select the provider.

id String

The rule's ID.

GET/v1/router/rules

Method Path Description

POST Sandbox
https://merchant-api.switchpayments.com/v1/router/rules

Production
https://merchant-api.switchpayments.com/v1/router/rules

List the available
Dynamic Routing rules.

REQUEST

 $ curl GET https://merchant-

api.switchpayments.com/v1/router/rules?charge_type={chargeType}&merchant_id={accountId} -u

accountId:merchantApiKey

RESPONSE : HTTP 200

 {
 "card_onetime": [

 {

 "charge_type": "card_onetime",

 "conditions": {

 "amount__gt": 50,

Page 195
[Technical Documentation]

 "processing_currency__in": [

 "DOP"

]

 },

 "created_at": "2019-09-10T12:09:47.583718+00:00",

 "enabled": true,

 "priority": 2,

 "params": [

 {

 "channel": {

 "label": "card_onetime_cardnet",

 "processor": "cardnet",

 "id": "7581c500240442c1ec8b2f755583cdd4d488708f5ccb1ba5"

 },

 "value": 1

 }

],

 "type": "percentage",

 "id": "7d50afab5076d99ffcf84ce3abe7b056ab8844c45cd0190b"

 },

 {

 "charge_type": "card_onetime",

 "conditions": null,

 "created_at": null,

 "enabled": true,

 "updated_at": null,

 "priority": null,

 "params": [

 {

 "channel": {

 "label": "card_onetime_acapture",

 "processor": "acapture",

 "id": "9c62fb17a095f6dc32f3f36ea289f8a9473afcb95b1ead14"

 },

 "value": 1

 }

],

 "type": "percentage",

 "id": null

 }

]

 }

Result Parameters

Page 196
[Technical Documentation]

charge_type String

Identifier of the charge type (e.g. card_onetime, card_recurring, paypal). If the request does not

include charge_type, all charge types will be returned.

conditions JSON Object

The routing conditions.

created_at String

The date when the rule was created.

updated_at String

The date when the rule was last updated.

enabled Boolean

Whether the rule is enabled or not.

priority Integer

The rule's priority. 0 being the top priority.

params Array

Necessary configurations to calculate the rule's output.

type String

Type of algorithm that will be used to select the processor.

id String

The rule's ID.

Check out the following use case

Page 197
[Technical Documentation]

It is not possible to create a routing rule without registering all the required fields. Tending to

this error case, a list with all the invalid fields and the respective errors is returned.

REQUEST

 $ curl -vX POST https://merchant-api.switchpayments.com/v1/router/rules?merchant_id={accountId} -u

accountId:merchantApiKey -d '{

 "charge_type": "card_onetime",

 "type": "percentage"

 }'

Result Parameters

message String

String with the error details, in this case: "Invalid parameters".

parameters JSON Object

A list with all the invalid fields and the respective errors.

RESPONSE : HTTP 400

 {
 "message": "Invalid parameters",

 "parameters": {

 "params": [

 "This field is required."

]

 }

 }

Page 198
[Technical Documentation]

GET/v1/router/rules/{id}

Method Path Description

POST Sandbox
https://merchant-
api.switchpayments.com/v1/router/rules/%7Bid%7D

Production
https://merchant-
api.switchpayments.com/v1/router/rules/%7Bid%7D

Search for a specific
routing rules using its ID.

REQUEST

 $ curl -vX GET https://merchant-api.switchpayments.com/v1/router/rules/{id}?merchant_id={accountId} -u

accountId:merchantApiKey

RESPONSE : HTTP 200

 {

 "charge_type": "card_onetime",

 "conditions": {

 "amount__gt": 50,

 "processing_currency__in": [

 "DOP"

]

 },

 "created_at": "2019-09-10T12:09:47.583718+00:00",

 "enabled": true,

 "priority": 2,

 "params": [

 {

 "channel": {

 "label": "card_onetime_cardnet",

 "processor": "cardnet",

 "id": "7581c500240442c1ec8b2f755583cdd4d488708f5ccb1ba5"

 },

 "value": 1

 }

Page 199
[Technical Documentation]

],

 "type": "percentage",

 "id": "7d50afab5076d99ffcf84ce3abe7b056ab8844c45cd0190b"

 }

Result Parameter

charge_type String

Identifier of the charge type (e.g. card_onetime, card_recurring, paypal).

conditions JSON Object

The routing conditions.

created_at String

The date when the rule was created.

updated_at String

The date when the rule was last updated.

enabled Boolean

Whether the rule is currently enabled or not.

priority Integer

The rule's priority. 0 being the top priority.

params Array

Required configurations to calculate the rule's output.

type String

Type of algorithm that will be used to select the provider.

Page 200
[Technical Documentation]

id String

The rule's ID.

PUT/v1/router/rules/{id}

Method Path Description

POST Sandbox
https://merchant-
api.switchpayments.com/v1/router/rules/%7Bid%7D

Production
https://merchant-
api.switchpayments.com/v1/router/rules/%7Bid%7D

Substitute routing rule
through its ID.

REQUEST

 $ curl -vX PUT https://merchant-api.switchpayments.com/v1/router/rules/{id}?merchant_id={accountId} -u

accountId:merchantApiKey -d '{

 "charge_type": "card_onetime",

 "conditions": {

 "amount__gt": 50,

 "processing_currency__in": [

 "DOP"

]

 },

 "created_at": "2019-09-10T12:09:47.583718+00:00",

 "enabled": true,

 "priority": 2,

 "params": [

 {

 "channel": {

 "label": "card_onetime_cardnet",

 "processor": "cardnet",

 "id": "7581c500240442c1ec8b2f755583cdd4d488708f5ccb1ba5"

 },

 "value": 1

Page 201
[Technical Documentation]

 }

],

 "type": "percentage",

 "id": "7d50afab5076d99ffcf84ce3abe7b056ab8844c45cd0190b"

 }

Request Parameters

charge_type String

Identifier of the charge type (e.g. card_onetime, card_recurring, paypal).

conditions JSON Object

The routing conditions.

created_at String

The date when the rule was created.

updated_at String

The date when the rule was last updated.

enabled Boolean

Whether the rule is currently enabled or not.

priority Integer

The rule's priority. 0 being the top priority.

params Array

Necessary configurations to calculate the rule's output.

type String

Type of algorithm that will be used to select the provider.

id String

The rule's ID.

Page 202
[Technical Documentation]

RESPONSE : HTTP 200

 {

 "charge_type": "card_onetime",

 "conditions": {

 "amount__gt": 50,

 "processing_currency__in": [

 "DOP"

]

 },

 "created_at": "2019-09-10T12:09:47.583718+00:00",

 "enabled": true,

 "priority": 2,

 "params": [

 {

 "channel": {

 "label": "card_onetime_cardnet",

 "processor": "cardnet",

 "id": "7581c500240442c1ec8b2f755583cdd4d488708f5ccb1ba5"

 },

 "value": 1

 }

],

 "type": "percentage",

 "id": "7d50afab5076d99ffcf84ce3abe7b056ab8844c45cd0190b"

 }

Result Parameter

charge_type String

Identifier of the charge type (e.g. card_onetime, card_recurring, paypal).

conditions JSON Object

The routing conditions.

created_at String

The date when the rule was created.

Page 203
[Technical Documentation]

updated_at String

The date when the rule was last updated.

enabled Boolean

Whether the rule is currently enabled or not.

priority Integer

The rule's priority. 0 being the top priority.

params Array

Required configurations to calculate the rule's output.

type String

Type of algorithm that will be used to select the provider.

id String

The rule's ID.

DELETE/v1/router/rules/{id}

Conditions set in routing rules can be related to five different variables: amount, processing
currency, card BIN, card brand, and issuer country.

Condition Type Condition Example

Amount greater than amount__gt: 100

Page 204
[Technical Documentation]

greater than or
equals

{amount__gte: 101}

 less than {amount__lt: 103}

 less than or equals {amount__lte: 102}

Processing
Currency

in processing_currency__in: ["EUR"]

 not in processing_currency__not_in: ["USD"]

Card BIN in {card_bin__in: ["377750", "377753"]}

Card Brand in {card_brand__in: ["AMERICAN EXPRESS"]}

 not in {card_brand__not_in: ["AMERICAN EXPRESS"]}

Issuer Country in {issuer_country__in: ["US"]}

 not in {issuer_country__not_in: ["US"]}

POST/v1/router/rules/priority

Page 205
[Technical Documentation]

REQUEST

 $ curl -vX POST https://merchant-api.switchpayments.com/v1/router/rules/priority?merchant_id={accountId} -u

accountId:merchantApiKey -d '{

 "charge_type": "card_onetime",

 "priority": 2

 }

Request Parameter

charge_type String

Identifier of the charge type (card_onetime, card_recurring, paypal...)

priority Integer

The rule's priority (the lower, the more priority it has)

RESPONSE : HTTP 200

 {

 "card_onetime": [

 {

 "charge_type": "card_onetime",

 "conditions": {

 "amount__gt": 50,

 "processing_currency__in": [

 "DOP"

]

 },

 "created_at": "2019-09-10T12:09:47.583718+00:00",

 "enabled": true,

 "priority": 2,

 "params": [

 {

 "channel": {

 "label": "card_onetime_cardnet",

 "processor": "cardnet",

 "id": "7581c500240442c1ec8b2f755583cdd4d488708f5ccb1ba5"

 },

 "value": 1

 }

Page 206
[Technical Documentation]

],

 "type": "percentage",

 "id": "7d50afab5076d99ffcf84ce3abe7b056ab8844c45cd0190b"

 },

 {

 "charge_type": "card_onetime",

 "conditions": null,

 "created_at": null,

 "enabled": true,

 "updated_at": null,

 "priority": null,

 "params": [

 {

 "channel": {

 "label": "card_onetime_acapture",

 "processor": "acapture",

 "id": "9c62fb17a095f6dc32f3f36ea289f8a9473afcb95b1ead14"

 },

 "value": 1

 }

],

 "type": "percentage",

 "id": null

 }

]

 }

Result Parameter

charge_type String

Identifier of the charge type (card_onetime, card_recurring, paypal...). If the request does not

include charge_type, all charge types will be returned.

charge_type String

Identifier of the charge type (card_onetime, card_recurring, paypal...).

conditions JSON Object

Page 207
[Technical Documentation]

The routing conditions.

created_at String

The date when the rule was created.

updated_at String

The date when the rule was last updated.

enabled Boolean

Whether the rule is enabled or not.

priority Integer

The rule's priority (the lower, the more priority it has).

params Array

Necessary configurations to calculate the rule's output.

type String

Type of algorithm that will be used to select the processor.

id String

The rule's ID.

Page 208
[Technical Documentation]

06.2_Strategy

When considering the course of action to take with your Routing Rules there are two

strategies to keep in mind: Percentage and Fallback.

Tackle acceptance rates and recover lost revenue.
Declined transactions cost you money and potential customers. When

planning a future-proof payment structure, the acceptance rate is seen as

the critical metric to account for. Dynamic Routing can help with that. Learn

more about acceptance rates.

type: "percentage"

With percentage, you can distribute your transactions across any number of channels available

to you. Under params you should list the channel_id of the channels you want to pick and in

value the respective percentages of transactions intended for routing.

The probability of a given transaction landing on a specific channel is defined by an algorithm.

With this in mind, the resulting distribution will not match precisely the one configured, but

the bigger the number of transactions, the closer it will get to the set percentage goals. In the

following example, we select two channels for routing, each of them holding 50% of the

transactions.

STRATEGY PERCENTAGE EXAMPLE

 {
 "charge_type": "card_onetime",

 "conditions": [

 { amount__gt: 10000},

],

 "params": [

 {"channel_id": "1a2b3c4d5e", "value": 0.5},

 {"channel_id": "2a3b4c5d6e", "value": 0.5}

],

 "type": "percentage"

 }

Page 209
[Technical Documentation]

type: "fallback"

With the fallback strategy, you are able to define which channels become the default for

handling your transactions when a certain condition is verified. As you can observe in the

request example that follows, the structure of the request is similar, minus the value attributed

to the different percentages and changing the type of strategy. You are free to select multiple

channels for this routing strategy.

STRATEGY FALLBACK EXAMPLE

 {

 "charge_type": "card_onetime",

 "conditions": [

 { amount__gt: 10000},

],

 "params": [

 {"channel_id": "1a2b3c4d5e"},

],

 "type": "fallback"

 }

Page 210
[Technical Documentation]

07_Analytics

Turn big data into valuable insights.
Managing millions of transactions makes it harder to control unit costs and spot commission

inconsistencies. Getting onboard with Analytics will transform your payment setup, promote

efficiency, and push for bigger profits.

Our system aggregates all data and makes it searchable. We track commission variations

across providers, markets, payment methods and fees. This way you can follow your payments

lifecycle and find areas for improvement. Analytics is here to help you gain insight into your

business and make the most of your payment operation.

1. Sum Up

Look back on your year, month, or week. Find all your results in one place with ease of

access and user-friendly interpretations. With Analytics you can tap into the sum of

your transaction information, weed out the unnecessary, and focus on what needs

work.

2. Filter

Find the specifics. Filter Analytics by categories like device, country, or payment

method. Quickly call out results for your payment strategies.

3. Gain Insight

We show you the money. Analyze rates, balances, and refunds. Figure out how to

convert your efforts into bolder profits.

With Analytics you can gain insight into multiple variables essential to your payment

operation. Here are some of them.

Page 211
[Technical Documentation]

Have we mentioned the Dashboard?

The Dashboard offers a comprehensive and user-friendly interface to

support your payment strategy.

Analytics section for totals.

Balance

Balance is the total Payment amount deducted from refunds, fees, and disputes. It represents

the amount outstanding on all providers' merchant accounts, which is set to be transferred to

the merchant’s bank accounts in the future. Compare different time periods and find out if

your income is going up or down.

Dates and Date Granularity

Filter your Analytics by time period, understand the efficiency of your last seasonal campaign,

explore your customers’ habits. Sum up data by year, month, week, or day, zoom into the

details, and display the big picture to your team and associates.

Page 212
[Technical Documentation]

Failures

Filter failures, find out if mistakes are being repeated and fix them.

Analytics section for payment operations.

Refunds

Refund percentage calculated based on transaction volume. Notice your refunds and tap into

customer satisfaction.

Average Payment Fees

Processing fees based on past settlements. See where your money goes, figure out if your

partnerships carry on being beneficial, watch out for agreements.

Acceptance Rate

Consumers will not settle for anything less than perfection and uninterrupted functionality in

the payment processing department. Understand their journey through Acceptance Rate,

which mirrors the volume of successful transactions by the total volume of transactions.

Unsettled Balance

Processing fees based on past settlements. See where your money goes, figure out if your

partnerships carry on being beneficial, watch out for agreements.

Page 213
[Technical Documentation]

Average Ticket

The average of all successful payment amounts. Find the middle ground in purchases, be

aware of what to expect from checkout.

Unsettled Volume

Payment volume, still outstanding in all providers' merchant accounts.

Analytics section for demographics.

Payment Method

The payment methods used by your customers. Identify the most popular payment options,

understand if your customers might be missing something, pick the best options for your

strategy.

Currency

Page 214
[Technical Documentation]

Currencies used by your customers. Paint a clearer picture of your exchanges, see your

strongest currencies.

Device

The device used by your customer during the purchase. Keep track of your customer journey,

improve navigation, and user experience.

Country

The location of your customers. Understand where to place your international efforts, look for

areas of improvement.

GET /v1/analytics

Method Path Description

POST Sandbox
https://merchant-api.switchpayments.com/v1/analytics

Production
https://merchant-api.switchpayments.com/v1/analytics

Get analytics data.

REQUEST

 $ curl -vX GET https://merchant-api.switchpayments.com/v1/analytics?merchant_id=accountId -u

accountId:MerchantAPIKey

 {

 "start_date": 2020-05-26T23:00:00,

 "end_date":2020-05-27T10:00:00,

 }

Request Body Parameters

start_date Date Required

Page 215
[Technical Documentation]

The start date for the results.

end_date Date Required

End date for the results.

RESPONSE : HTTP 200

 {
 "filters": {

 "end_date": "2020-05-27T10:00:00",

 "merchant_id": "Lq9aVoz7eI852ID7ffNgGD9rr9Grv3ZQeE9dtfF0KvE6QxGQLwmjCPFkqmpP6td",

 "start_date": "2020-05-26T23:00:00",

 "success": "true"

 },

 "metrics": [

 {

 "data": [

 {

 "commissions": {

 "avg_estimated_payments_fixed_commissions": 2.2457779374775423e-05,

 "avg_estimated_payments_variable_commissions": 4.7295130244395855e-05,

 "avg_estimated_refunds_fixed_commissions": 0.0,

 "avg_estimated_refunds_variable_commissions": 0.0,

 "total_payments_fixed_commissions": 0,

 "total_payments_variable_commissions": 0,

 "total_refunds_fixed_commissions": 0,

 "total_refunds_variable_commissions": 0

 },

 "dimension": "payment_method",

 "label": "card_onetime",

 "payments_count": 22264,

 "payments_count_unsettled": 22264,

 "payments_volume": 634315.2,

 "payments_volume_unsettled": 634315.2,

 "refunds_count": 1,

 "refunds_count_unsettled": 1,

 "refunds_volume": 10.0,

 "refunds_volume_unsettled": 10.0,

 "settled_balance": 0.0,

 "unsettled_balance": 634274.6999799999

Page 216
[Technical Documentation]

 }

],

 "dimension": "success",

 "label": true

 }

]

 }

Response Parameters

filters Array

Analytics filters.

end_date Date

End date for the results.

merchant_id JSON Object

ID of the Merchant account the Analytics data belongs to.

start_date Date

The start date for the results.

succcess Boolean

Status attributed to the transactions.

metrics Array

Metrics considered in the requested Analytics information.

Next Steps

Page 217
[Technical Documentation]

Take a dive into our Reporting for more information on how to monitor your transactions.

08_Reporting

All of your transactions, summed up. When it comes to monitoring your transactions,

organizing your archives, and following regulations, financial reporting is essential to your

business. With the Payshop Online Payments Platform, you can do it all in one place by using

our Reporting Application.

1. Create and Customize

Generate new reports and tap into the specifics of your transaction landscape. With

the Reporting templates you are able to segment your transactional data, tap into

new opportunities and push problematic areas to stand out.

2. Search and Filter

Find answers to all your stakeholders' questions in a report. Looking for specifics?

Trying to sum up a month’s worth of work? Reporting on your strongest currency?

You can find it all with the Reporting application.

3. Share and Archive

Manage your archives and share files with the people that matter. Set up billing

schedules customized to fit your clients. Handle all the paperwork from one single

source.

 Reports

 Learn how to generate
 comprehensive reports from

 your transactions.

 Reporting Templates
 Understand what conditions
 are relevant to your analysis
 and how to set up the ideal

 report.

Reporting Schedules
Decide on periodicity and

frequency in the creation of
your reports.

https://switchpayments.com/docs/reporting#reporting-templates

Page 218
[Technical Documentation]

08.1_Reports

Generating reports of your transactions should be a straightforward process that aids the

management and upkeep of your company and accounts. Through Reporting you can get a

quick overview of the transactions processed through the Payshop Online Payments platform.

Reports are .CVS files generated from your list of transactions. You can filter reports following

multiple headers related to charge, instrument, payment, refund, dispute, reversal and settlement

events. Before being able to proceed with the creation of a report, you need to set up a

Reporting template which defines the structure and conditions of your report. You can find

more information on how to create Reporting templates in the next chapter.

Existing reports can be revisited by searching for specific designations, namely by the

description given to the report, by date and by details like currency.

POST /v1/reporting/reports{id}

Method Path Description

POST Sandbox
https://merchant-
api.switchpayments.com/v1/reporting/reports

Production
https://merchant-
api.switchpayments.com/v1/reporting/reports

Generate a new report.

REQUEST

Page 219
[Technical Documentation]

 $ curl -vX POST https://merchant-api.switchpayments.com/v1/reporting/reports?merchant_id=accountId -u
accountId:APIKey
 {
 "description": "Example",
 "template": "862d7a6939de9eda2ce47af9cc2c848211ab5f0a5e7cc539"
 }

Request Body Parameters

description String Required

Description of the new report being generated.

template String Required

Reporting template ID applied to the report being generated.

RESPONSE : HTTP 201 CREATED

 {
 "id": "0e22990c2a581f3257394771cb52b85821a7b6da5f3be6a9",

 "type": "default",

 "status": "pending",

 "currency": "EUR",

 "description": "Example",

 "transactions_query": null,

 "transactions_file_type": null,

 "transactions_file_headers": null,

 "failure_description": null,

 "metadata": null,

 "merchant_id": "Lq9aVoz7eI852ID7ffNgGD9rr9Grv3ZQeE9dtfF0KvE6QxGQLwmjCPFkqmpP6td",

 "template": {

 "items": [

 {

 "label": "Example Item",

 "quantity_type": "fixed",

 "quantity_config": {

 "value": 2.0

 },

 "value_type": "tiered",

 "value_config": {

 "tiers": [

Page 220
[Technical Documentation]

 {

 "value": 200,

 "minimum_quantity": 0

 }

]

 },

 "minimum_quantity": null,

 "minimum_total": null,

 "maximum_quantity": null,

 "maximum_total": null

 }

],

 "id": "403d9c8fa29319515bbf454ebdc450146f156ad75f3bd75c"

 },

 "created_at": "2020-08-18T14:33:13.142267+00:00",

 "updated_at": "2020-08-18T14:33:13.142332+00:00"

 }

Response Parameters

id String

Identifier for the generated report.

type String

Type of report generated. It can either be default or billing.

currency String

Currency present in the report.

description String

Description attributed to the report.

metadata String

Metadata associated with the report.

merchant_id String

Page 221
[Technical Documentation]

Identifier of the merchant to whom the report belongs to.

template JSON Object

Details and conditions defined by the report template.

created_at Date

Date when the report was created.

created_at Date

Date when the report was last updated.

DELETE /v1/reporting/reports{id}

Method Path Description

POST Sandbox
https://merchant-
api.switchpayments.com/v1/reporting/reports{id}

Production
https://merchant-
api.switchpayments.com/v1/reporting/reports{id}

Delete a report.

REQUEST

 $ curl -vX DELETE https://merchant-api.switchpayments.com/v1/reporting/reports/{id}?merchant_id=accountId -
u accountId:APIKey

RESPONSE : HTTP 204 NO CONTENT

The server successfully processed the request and it is not returning any content.

Page 222
[Technical Documentation]

GET /v1/reporting reports

Method Path Description

POST Sandbox
https://merchant-
api.switchpayments.com/v1/reporting/reports

Production
https://merchant-
api.switchpayments.com/v1/reporting/reports

Get the list of existing
reports.

REQUEST

 $ curl -vX GET https://merchant-api.switchpayments.com/v1/reporting/reports?merchant_id=accountId -u
accountId:APIKey
 {
 "created_at__gte": "2020-07-31T23:00:00",
 "created_at__lte": "2020-08-04T22:59:59",
 “type”: “default”,
 “currency”:”EUR”,
 “description”: “example”
 }

Request Body Parameters

created_at__gte Date

When filtering the results by date, this is the start date.

created_at__lte Date

When filtering the results by date, this is the end date.

type String

You can filter reports by type. Billing reports are set to billing, all other reports fit the default type.

currency String

Currency applied in the report.

Page 223
[Technical Documentation]

description String

Designation attributed to the report.

RESPONSE : HTTP 200 CREATED

 {

 {

 "collection": [

 {

 "id": "bce180137bfd5393633b18dd4748390b46fe6c565f299085",

 "type": "default",

 "status": "finished",

 "currency": "EUR",

 "description": "example",

 "transactions_query": {

 "type": [

 "charge",

 "payment"

],

 "currency": [

 "TRY",

 "USD"

],

 "created_at__gte": "2020-08-03T23:00:00",

 "created_at__lte": "2020-08-05T10:47:00"

 },

 "transactions_file_type": "csv",

 "transactions_file_headers": [

 {

 "name": "Merchant ID",

 "field": "merchant_id"

 }

],

 "failure_description": null,

 "metadata": {

 "cenas": "cenas"

 },

 "merchant_id": "Lq9aVoz7eI852ID7ffNgGD9rr9Grv3ZQeE9dtfF0KvE6Q",

 "template": {

 "items": [

 {

 "label": "asd",

Page 224
[Technical Documentation]

 "value_type": "tiered",

 "value_config": {

 "tiers": [

 {

 "value": 2,

 "minimum_quantity": 0

 }

]

 },

 "maximum_total": null,

 "minimum_total": null,

 "quantity_type": "count",

 "quantity_config": {

 "filters": [

 {

 "charge_type__in": [

 "card_onetime"

],

 "transaction_type__in": [

 "charge"

]

 }

]

 },

 "maximum_quantity": null,

 "minimum_quantity": null

 },

 {

 "label": "poknj",

 "value_type": "tiered",

 "value_config": {

 "tiers": [

 {

 "value": 20,

 "minimum_quantity": 0

 },

 {

 "value": 10,

 "minimum_quantity": 100

 }

]

 },

 "maximum_total": null,

 "minimum_total": null,

Page 225
[Technical Documentation]

 "quantity_type": "count",

 "quantity_config": {

 "filters": [

 {

 "charge_type__in": [

 "card_onetime"

],

 "transaction_type__in": [

 "payment"

]

 }

]

 },

 "maximum_quantity": null,

 "minimum_quantity": null

 }

]

 },

 "created_at": "2020-08-04T16:44:53.466096+00:00",

 "updated_at": "2020-08-04T16:44:54.882597+00:00",

 "items": [

 {

 "label": "asd",

 "quantity": 4.0,

 "original_quantity": 4,

 "value": 2.0,

 "total": 8.0,

 "original_total": 8.0,

 "template_item_details": {

 "quantity_type": "count",

 "quantity_config": {

 "filters": [

 {

 "charge_type__in": [

 "card_onetime"

],

 "transaction_type__in": [

 "charge"

]

 }

]

 },

 "value_type": "tiered",

 "value_config": {

Page 226
[Technical Documentation]

 "tiers": [

 {

 "value": 2,

 "minimum_quantity": 0

 }

]

 },

 "minimum_quantity": null,

 "minimum_total": null,

 "maximum_quantity": null,

 "maximum_total": null

 }

 },

 {

 "label": "poknj",

 "quantity": 1.0,

 "original_quantity": 1,

 "value": 20.0,

 "total": 20.0,

 "original_total": 20.0,

 "template_item_details": {

 "quantity_type": "count",

 "quantity_config": {

 "filters": [

 {

 "charge_type__in": [

 "card_onetime"

],

 "transaction_type__in": [

 "payment"

]

 }

]

 },

 "value_type": "tiered",

 "value_config": {

 "tiers": [

 {

 "value": 20,

 "minimum_quantity": 0

 },

 {

 "value": 10,

 "minimum_quantity": 100

Page 227
[Technical Documentation]

 }

]

 },

 "minimum_quantity": null,

 "minimum_total": null,

 "maximum_quantity": null,

 "maximum_total": null

 }

 }

],

 "total": 28.0

 }

],

 "filters": {

 "created_at__gte": "2020-07-31T23:00:00",

 "created_at__lte": "2020-08-04T22:59:59",

 "type": "default"

 },

 "pagination": {

 "page": 1,

 "per_page": 30,

 "total_pages": 1,

 "total_items": 1

 }

 }

 }

08.2_Templates

Reports are automatically generated from your transaction data. You can schedule reports

and also define different types of reports. This is where templates come in. When setting up

your Reporting system, you should consider the information you want to collect from your

reports, beyond getting the full list of transactions for a given time period, you can monitor

specific information that is relevant to the course of your business.

1. See the big picture.

For instance, get the gross amount of payments made in the last month. Label: Gross

Amount, Quantity: Sum, Sum Field: Amount, Charge type: Check all, Transaction type:

Page 228
[Technical Documentation]

Payment, Value: Fixed.

2. Zoom into the details.

For instance, get the sum of exchange rate expenditures in all my payments. Label:

MSC Fixed, Quantity: Sum, Fixed: 0.19, Charge type: Check All, Transaction Type:

Payment, Value: Fixed.

Report Feature Conditions

Description Descriptions are strings set by the user. You can label the
Reporting template according to your needs.

Currency You can select multiple currencies from the available list.

Label
Templates can have multiple items which represent conditions
present in that template. The label is the name you attribute to
these conditions.

Quantity

Fixed
Count
Sum

You can analyze transactions in reports by counting the absolute
number of transactions that fit your conditions and also by
generating a sum of the values present in those transactions.

Value

Fixed
Tiered

You can segment the values present in your reports either by a
fixed interval or multiple intervals or tiers.

Page 229
[Technical Documentation]

Minimum/Caps

Quantity
Total

It is possible to cap the transactions present in your reports at a
minimum or maximum quantity and value of transactions.

POST /v1/reporting/templates

Method Path Description

POST Sandbox
https://merchant-
api.switchpayments.com/v1/reporting/templates

Production
https://merchant-
api.switchpayments.com/v1/reporting/templates

Create a new Reporting
template.

REQUEST

 $ curl -vX POST https://merchant-api.switchpayments.com/v1/reporting/templates?merchant_id=accountId -u
accountId:APIKey
 {
 "currency": "EUR" ,
 "description": "Example01"
 }

Request Body Parameters

currency String Required

Currency applied to the reports following this template.

description String Required

Designation for the template being created.

label String Required

Page 230
[Technical Documentation]

Designation for each item of the template being created.

quantity String Required

Operation to be performed on the transactions included in this report. It can be fixed, sum or

count.

value String Required

How the results should be presented in the reports following this template, either fixed or

tiered.

RESPONSE : HTTP 200 CREATED

 {
 "id": "1da379eaa030cede73d8e425968ecdcff51418285f3bec60",

 "description": "Example01",

 "currency": "EUR",

 "items": [],

 "created_at": "2020-08-18T14:57:36.382929+00:00",

 "updated_at": "2020-08-18T14:57:36.383009+00:00"

 }

Response Parameters

id String

Identification of the report template.

description String

Designation for this template.

currency String

Currency applied to the reports generated through this template.

created_at String

Date and time in which the report template was created.

updated_at String

Page 231
[Technical Documentation]

Date and time in which the report template was last updated.

PATCH /v1/reporting/templates/{id}

Method Path Description

POST Sandbox
https://merchant-
api.switchpayments.com/v1/reporting/templates/{id}

Production
https://merchant-
api.switchpayments.com/v1/reporting/templates/{id}

Make changes to an
existing Reporting
template.

REQUEST

 $ curl -vX POST https://merchant-
api.switchpayments.com/v1/reporting/templates/{id}?merchant_id=accountId -u accountId:APIKey
 {
 "currency": "USD"
 }

Request Body Parameters

currency String

In this example, we are making changes to the currency applied to the reports under this

template. You can make changes to any of the parameters available in the creation of a

Reporting template.

RESPONSE : HTTP 201 OK

 {
 "id": "1da379eaa030cede73d8e425968ecdcff51418285f3bec60",

 "description": "Example01",

 "currency": "USD",

 "items": [],

Page 232
[Technical Documentation]

 "created_at": "2020-08-18T14:57:36.382929+00:00",

 "updated_at": "2020-08-18T14:57:36.383009+00:00"

 }

Response Parameters

id String

Identification of the report template.

description String

Designation for this template.

currency String

Currency applied to the reports generated through this template.

created_at String

Date and time in which the report template was created.

updated_at String

Date and time in which the report template was last updated.

DELETE /v1/reporting/templates/{id}

Method Path Description

POST Sandbox
https://merchant-
api.switchpayments.com/v1/reporting/templates/{id}

Production
https://merchant-
api.switchpayments.com/v1/reporting/templates/{id}

Delete a report template.

REQUEST

Page 233
[Technical Documentation]

 $ curl -vX DELETE https://merchant-
api.switchpayments.com/v1/reporting/templates/{id}?merchant_id=accountId -u accountId:APIKey

RESPONSE : HTTP 201 OK

The server successfully processed the request and it is not returning any content.

08.3_Reporting Schedules

You can schedule your reports to be generated automatically on a particular date and with

specific frequency to better match your monitoring needs. This can be accomplished by

setting up a reporting schedule. You can create as many reporting schedules as you would like

and associate them to previously set Reporting templates.

When creating a new Reporting schedule, you should keep in mind what Reporting template

you intend to associate to this schedule, the frequency to which it should be set and also the

date of the first occurrence for the data included and the timezone it should guide itself by.

POST /v1/reporting/schedules

Method Path Description

POST Sandbox
https://merchant-
api.switchpayments.com/v1/reporting/schedules

Production
https://merchant-
api.switchpayments.com/v1/reporting/schedules

Create a new Reporting
schedule.

REQUEST

Page 234
[Technical Documentation]

 $ curl -vX GET https://merchant-api.switchpayments.com/v1/reporting/schedules?merchant_id=accountId -
u accountId:APIKey
 {
 “base_report_description”: "Repo"
 “execution_timezone”: "Europe/Lisbon"
 “first_execution”: "2020-05-05T18:00:00.000000+00:00"
 “frequency”: "monthly"
 “report_type”: "default"
 “template”: "862d7a6939de9eda2ce47af9cc2c848211ab5f0a5e7cc539"
 }

Request Body Parameters

base_report_description String

Title attributed to the Reporting schedule.

execution_timezone String

Timezone applied to the Reporting schedule.

first_execution Date

Starting date for the report information.

frequency String

Frequency in which the reports should be generated. It can be monthly, weekly, or daily.

report_type String

Reports should have the report_type set to default. Billing specific reports are set to billing.

template String

Template applied to the reports in this Reporting schedule.

RESPONSE : HTTP 201 CREATED

Page 235
[Technical Documentation]

 {
 base_report_description: "Repo"

 created_at: "2020-05-05T13:35:23.192929+00:00"

 execution_timezone: "Europe/Lisbon"

 first_execution: "2020-05-05T18:00:00.000000+00:00"

 frequency: "monthly"

 id: "c5190ed3006fa0797a64074ef5f619319fb342fc5eb16b9b"

 report_metadata: null

 report_type: "default"

 template: "862d7a6939de9eda2ce47af9cc2c848211ab5f0a5e7cc539"

 updated_at: "2020-05-05T18:00:00.336279+00:00"

 }

Response Parameters

base_report_description String

Title attributed to the Reporting schedule.

created_at Date

Date in which this schedule was created.

execution_timezone String

Timezone applied to the Reporting schedule.

first_execution Date

Starting date for the report information.

frequency String

Frequency in which the reports should be generated. It can be monthly, weekly, or daily.

id String

Identifier for the reporting schedule.

Page 236
[Technical Documentation]

report_metadata Array

Additional information included when creating the Reporting schedule.

report_type String

Reports should have the report_type set to default. Billing specific reports are set to billing.

template String

Template applied to the reports in this Reporting schedule.

updated_at Date

Date in which this schedule was last updated.

Next Steps

Jump into the interfaces, learn more about the capabilities of the Dashboard and how it can simplify your payments

operations.

Page 237
[Technical Documentation]

09_Dashboard

Centralized overview and full control of your payment operation.

The Dashboard offers a comprehensive and user-friendly interface to support your payment

strategy. By allowing Merchants to quickly interact with Transactions, study Analytics, and tap

into Settlements and Reports, the Dashboard makes setting up and managing your payment

operation much simpler, quicker, and straightforward.

 Dashboard Features

 The Payshop Online
Payments platform

 Components are just one
 click away in the

 Dashboard.

 Dashboard Settings
 Customize your Merchant

 account and define the
 settings for your operation.

Analytics

The insights provided by the Analytics’ tab allow Merchants to verify the status of Transactions

and spot opportunities for transaction optimization. At the same time, this part of the

Dashboard offers an in-depth look at the landscape of Merchants’ Transactions, be it by

location, time, or device.

This overview can show results from a specific date or summarize the data acquired over the

week, month, or year.

Filters can aid navigation in the Analytics tab. These filters refer to Payment Methods

employed, currency, and country, and device used for Payment. It is also possible to filter by the

success or failure of the Transactions and by date.

Page 238
[Technical Documentation]

Filter Description

Payment

Method

The Payment method dropdown mirrors the chosen channels. The user is

able to compare Transactions between channels and understand the

status of each Payment Method in regards to its Merchant. (e.g. Alipay,

Paypal, Sofort).

Currency
The currency applied to Transactions can also filter the results presented in

the Analytics tab.

Country
Understanding the landscape of Transactions for particular countries or

groups of countries may prove very useful for Merchants.

Device
Consumers’ choice of device for payments allows merchants to understand

which platforms bring in more or less Payments. (Desktop, Tablet, Mobile).

Success/Error
Analytics on successful Transactions and failed Transactions are available to

the user through filtering.

Dates

Granularity

Users can compare the Payment’s flow between different hours, days,

months or years.

Start Date and

End Date

Users can also tap into the Payments’ flow over a specific period of time by

setting up a start and an end date to their Analytics results.

Compare

Users can compare all the Analytics results from two instance perspectives.

This means it is possible to compare the Transactions between two

different payment methods, currencies, countries, devices or periods of

time.

The first data display shown in Analytics is balance. Here users can check the total volume of

transactions and the total number of payments over a day, week, month, or year.

Page 239
[Technical Documentation]

In the Dashboard, users can tap into all sorts of additional information. This includes the

percentage of refunds, the acceptance rate, and the average Transaction amount, and the

average Payment fees. The unsettled balance is also on display so Merchants can check the

amount of funds still outstanding throughout their Providers’ base.

Details on Transactions range from the split of Payment Methods used, the currency applied

and the device used for payment credential collection in the transaction. Information like this

is useful to the user as it provides insight into customers’ payment environment.

It is also possible to understand the geographical source of Payments by paying attention to

the mapped distribution per country. Customers’ locations appear listed on this interactive

display.

Transactions
When it is time to dive deep into the Transactions going through your Payment Channels,

everything is laid out for you on the Transactions tab. This includes Payment Methods,

Providers involved, and the status of Transactions. Merchants can generate reports with the

data they see fit and export particular transactions.

Whilst generating a Report, it is possible to select the metadata and parameters you are

looking for, be it for Charges, Instruments or Payments. After filtering transaction data, it’s possible

to export both in a CSV or Excel file. You can observe transactions through a simple Charge-

Instrument-Payment logic or pinpointing all Lifecycle Events.

When watching out for transactions, quickly understanding the status of each one is very

important. There are five possible statutes for transactions in the Dashboard. Invalid

instruments are highlighted by default.

Status Description

Confirmed Charge confirmed.

Success Payment successful.

Page 240
[Technical Documentation]

Authorized Instrument authorized.

Pending Instrument pending.

Invalid Instrument invalid.

When consulting a Charge, you can find its id, amount, currency and status in the header. The

Channel through which it was processed and the details from the request log which include

the consumer’s IP address and country. The Risk Rules and how the Charge abides by them or not

can also be found in the Charge details.

Going into the details of each registered Instrument, you can observe its respective Charge, as well

as the amount, currency and id. Besides the details already granted by the Charge, you will get

access to the Instrument parameters, which describe the authentication parameters provided

by your Customer, as long as they do not fall under the scope of sensitive data according to

the relevant Payment Scheme, in which case we will not expose them for security reasons.

Following the Instrument comes the Payment, which is also registered with every Transaction

and includes the results of the Payment process. Through the Payment page, you can also

generate Refunds, be it full Refunds or partial Refunds.

Reporting
Under Reporting, you can set report templates for your Transactions. Through these report

templates, you can download transaction data that is recurrently necessary to your operations

or make a note of a specific sales strategy or Payment’s time frame. Reports allow you to map

out total Transactions for a specific date, understand the average amount per transaction, and

the total profit. You can limit reports to a specific currency, charge_type, and transaction_type.

Page 241
[Technical Documentation]

09.1_Dashboard Settings

Account Details

Under the User’s Account option, it is possible to find account details, like name and email, and

then set up two-factor authentication. One important detail to consider under Account is the

personalization board. Here the user can select the language of the Dashboard, the time zone,

the date format, and the state of the Merchant API (Live, Staging, Custom).

Account Details

In Account Details you can register the User-specific fields and personalize the User profile,

Name, Email, Password.

Two Factor Authentication

The Dashboard offers Two Factor Authentication. It is under Account that you can generate

the respective codes and register trusted devices.

Codes, Trusted Devices.

Personalization

You can change the language, time zone, and date format using your Account settings.

Language, Timezone, Date Format, Merchant API.

Merchants

You can search for existing Merchants by name under your Dashboard's logotype. To get

access to the full list of merchants and respective account names and account id access the

Merchants tab.

Merchant information is condensed in the Merchants tab. Here you can find the main

merchant, its account id, and environment. You can also find the list of Sub-merchant

Accounts, in case they exist, and search and manage said sub-merchant Accounts.

Page 242
[Technical Documentation]

Merchant Details

You can come back to Merchant details to check your Environment, TEST/LIVE and your account

id.

Environment, Account id, Approval.

Billing

Billing settings can be found under Merchant. In this section you can go over your billing

history and set up a billing schedule.

History, Schedule, Frequency.

Sub-merchants

In the Merchants tab you can get an overview of your sub-merchant Accounts and access each

of them for further details or to proceed with changes, namely to billing.

Account Name, Account id.

Settings

In Settings, you can create Processing API Keys and Merchant API Keys and manage the ones

already in use. Settings also include permissions and authorization groups for users. This is the

part of the Dashboard where you can hand out different permissions to different members of

your organization so that they can access all the different Dashboard tools.

Processing API Keys

The Processing API Key set includes the Public Key and Private Key used during

Authentication.

Description, Status.

Merchant API Keys

Merchant API Keys can be set per Authorization Group. These are necessary to manage

different accounts and Users inside your operation.

Description, Status.

Users

In the Merchants tab you can get an overview of your sub-merchant Accounts and access each

of them for further details or to proceed with changes, namely to billing.

Account Name, Email Address, Account id.

Page 243
[Technical Documentation]

10_Annex

10.1_Payshop Channels

10.1.1_Card

 Fields Description

Channel ID Unique Switch ID identifying the channel.

Charge Type Charge type name.

Provider Charge type provider.

Integration
Type of integration made between Switch and the

Provider.

Client ID The Client ID/Access Key ID to request access token.

Client Secret
The Client Secret/Access Key Secret to request access

token.

Processing Channel ID ID from the Checkout processing channel to be used.

Sub Entity ID
ID of the Sub Entity on behalf of which the payments

will be processed.

Webhook Key The Key used to sign/verify the webhooks.

Page 244
[Technical Documentation]

Transactions Type
Transaction type to be used on 3DS transactions. By

default it is assumed “Goods / Service Purchase”.

Channel Label
Label identifying the channel (the default should be

card_checkout_payfac).

Channel for sharing
Whether this channel will be used for sharing with sub-

merchants, or for payment processing.

Enable Whether the channel is active (ready to be used) or not.

10.1.2_MBWay

 Fields Description

Channel ID Unique Switch ID identifying the channel.

Charge Type Charge type name.

Provider Charge type provider.

Integration
Type of integration made between Switch and the

Provider.

Entity ID Entity ID to use.

Client ID Client ID provided by SIBS.

Page 245
[Technical Documentation]

Terminal ID Terminal ID provided by SIBS.

API Token API Token provided by SIBS.

Webhook Secret for Encryption The secret key to decrypt webhooks.

Channel Label
Label identifying the channel (the default should be

mbway_sibs).

Channel for sharing
Whether this channel will be used for sharing with sub-

merchants, or for payment processing.

Enable Whether the channel is active (ready to be used) or not.

10.1.3_Multibanco

 Fields Description

Channel ID Unique Switch ID identifying the channel.

Charge Type Charge type name.

Provider Charge type provider.

Integration
Type of integration made between Switch and the

Provider.

Page 246
[Technical Documentation]

Entity ID Entity ID to use.

Client ID Client ID provided by SIBS.

Terminal ID Terminal ID provided by SIBS.

API Token API Token provided by SIBS.

Webhook Secret for Encryption The secret key to decrypt webhooks.

Channel Label
Label identifying the channel (the default should be

multibanco_sibs).

Channel for sharing
Whether this channel will be used for sharing with sub-

merchants, or for payment processing.

Enable Whether the channel is active (ready to be used) or not.

10.1.4_Payshop Reference

 Fields Description

Channel ID Unique Switch ID identifying the channel.

Charge Type Charge type name.

Provider Charge type provider.

Page 247
[Technical Documentation]

Integration
Type of integration made between Switch and the

Provider.

IBM Client ID Client ID of Payshop app.

IBM Client Secret Client Secret of Payshop app.

Payshop Client ID Payshop Client ID.

Payshop Entity ID Payshop Entity ID.

Channel Label
Label identifying the channel (the default should be

payshop_reference).

Channel for sharing
Whether this channel will be used for sharing with sub-

merchants, or for payment processing.

Enable Whether the channel is active (ready to be used) or not.

Page 248
[Technical Documentation]

10.2_Asynchronous payments

All channels used in the Payshop Online Payments platform, with the sole exception of Cards,

are asynchronous payment methods: this means that, after the successful creation of an

element “charge”, the element “instrument” will be also generated but its status shall remain

as “Pending” until callback information form the channel’s transaction provider entity is

received. This information is sent via webhook to the Merchant account where the charge was

made.

